期刊文献+

基于观点动力学的在线评分人数预测 被引量:3

Number Prediction for Online Rating Based on Opinion Dynamics
下载PDF
导出
摘要 多数观点动力学研究采用基于Agent的建模和仿真方法,与现实社会现象严重脱节。针对该问题,利用现实社会在线评分的统计数据验证和改进观点动力学模型的解释和预测能力。在评分过程中,个体的观点受到自身初始观点和群体观点的共同影响,产生的最终观点将决定个体是否加入评分群体,如果加入将产生评分行为,进而影响后续个体的观点及行为。据此过程建立一个连续观点动力学模型,对在线评分的人员数量进行预测。使用豆瓣网站的影片在线评分数据进行实验,分析各评分观点变化对在线评分数量的影响,结果表明,该模型能够有效预测在线评分人数;个体的最终观点主要受群体差-中-好评分观点的影响,而与自身初始观点基本无关;泊松参数值偏离最优值越远,预测准确率越低。 Most studies of opinion dynamics adopt Agent-based modeling and simulation for theoretical research and have serious gap with the real social problems. Aiming at this problem,this paper verifies and improves the interpretation and forecasting capabilities of the model with social statistical data of online rating. On the process of online rating,the individual opinion is influenced by its initial opinion and the group’ s opinions. The final opinion determines whether the individual to join the group and makes a rate or not. The rating of the individual affects the opinions and the behaviors of subsequent individuals. A simple dynamic model with continuous opinion based on this process is introduced to predict the number of personnel in online rating. It carries out experiments with the online rating data of film on the Internet website of Douban and analyses the effects of change of score proportion. Experimental results show that the model can effectively predict the number of online rating;Individual final opinion is mainly affected by the opinions of bad-normal-good in the group and almost has nothing to do with its initial opinion;The larger deviation of the Poisson parameter to optimum value leads to the lower accuracy of prediction.
出处 《计算机工程》 CAS CSCD 2014年第10期155-160,167,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61374185)
关键词 在线评分 观点动力学 模型预测 连续观点 泊松分布 实验验证 online rating opinion dynamics model prediction continuous opinion Poisson distribution experimental verification
  • 相关文献

参考文献18

  • 1Xia Haoxiang,Wang Huili,Xuan Zhaoguo.Opinion Dynamics:A Multidisciplinary Review and Perspective on Future Research[J].International Journal of Knowledge and Systems Science,2011,2(4):72-91.
  • 2Castellano C,Fortunato S,Loreto V.Statistical Physics of Social Dynamics[J].Reviews of Modern Physics,2009,81(2):591-646.
  • 3王龙,伏锋,陈小杰,王靖,武斌,楚天广,谢广明.复杂网络上的群体决策[J].智能系统学报,2008,3(2):95-108. 被引量:24
  • 4Galam S,Gefen Y,Shapir Y.Sociophysics:A New Approach of Sociological Collective Behavior[J].The Journal of Mathematical Sociology,1982,9(1):1-13.
  • 5Sznajd-Weron K,Sznajd J.Opinion Evolution in Closed Community[J].International Journal of Modern Physics C,2000,11(6):1157-1165.
  • 6Holley R,Liggett T.Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model[J].Annals of Probability,1975,3(4):643-663.
  • 7Galam S.Minority Opinion Spreading in Random Geometry[J].European Physical Journal B,2002,25(4):403-406.
  • 8Deffuant G,Neau D,Amblard F,et al.Mixing Beliefs Among Interacting Agents[J].Advances in Complex Systems,2000,3(1-4):87-98.
  • 9Hegselmann R,Krause U.Opinion Dynamics and Bounded Confidence Models,Analysis,and Simulation[J].Journal of Artificial Societies and Social Simulation,2002,5(3):1-8.
  • 10Gandica Y,del Castillo-Mussot M,Vázquez G J,et al.Continuous Opinion Model in Small-world Directed Networks[J].Physica A,2010,389:5864-5870.

二级参考文献160

  • 1Axelrod R 1997 The complexity of Cooperation (Princeton: Princeton University Press)
  • 2Chang Y F and Cai X 2007 Chin. Phys. Lett. 24 2430
  • 3Krapivsky P L and Redner S 2003 Phys. Rev. Lett. 90 238701
  • 4Chen P and Redner S 2005 Phys. Rev. E 71 036101
  • 5Galam S 2004 Physica A 333 453
  • 6Schwammle V, Gonzalez M C, Moreira A A, Andrade J S and Herrmann H J 2007 Phys. Rev. E 75 066108
  • 7Vartolozzi M, Leinweber D B and Thomas A W 2005 Phys. Rev. E 72 046113
  • 8Hegselmann R and Krause U 2002 J. Art. Soc. Social Simul. 5 3
  • 9Deffuant G, Neau D, Amblard F, Weisbuch G 2000 Adv. Complex Systems 3 87
  • 10Kenah E and Robins J M 2007 Phys. Rev. E 76 036113

共引文献62

同被引文献21

  • 1孙红,黎铨祺,赵娜.基于双层树状支持向量机的观点挖掘与倾向分析[J].智能计算机与应用,2021,11(3):44-47. 被引量:3
  • 2王美方,刘培玉,朱振方.基于TFIDF的特征选择方法[J].计算机工程与设计,2007,28(23):5795-5796. 被引量:23
  • 3李亚琴.用户在线消费评论研究的国际进展与分布格局一基于WebofScience论文的计量分析[J],2013.
  • 4GalamS. Application of Statistical Physics to Politics. Physica A: Statistical Mechanics and Its Applications, 1999,274 ( 1 ); 132-139.
  • 5Sznajd-Weron K, Sznajd J. Opinion Evolution in Closed Community[J]. International Journal of Modern Physics C, 2000, 11 (6):2000.
  • 6Holley R, Liggett T. Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model[J]. Annals of Probability,1975,3 (4) :643 -663.
  • 7Howe D A, Percival D B. Wavelet Variance, Allan Variance, Leakage[J]. IEEE Transactions on Instrumentation and Measurement, 1996,44(2):94-97.
  • 8Deffuant G, Neau D, Amblard F, et al. Mixing Beliefs Among Interacting Agents[J]. Advances in Complex Systems, 2011.
  • 9Hegselmann R, Krause U. Opinion Dynamics and Bounded Confidence Models, Analysisand Simulation[J]. Journal of Artificial Soci- eties and Social Simulation,2002,5 (3): 1-8.
  • 10杨鼎,阳爱民.一种基于情感词典和朴素贝叶斯的中文文本情感分类方法[J].计算机应用研究,2010,27(10):3737-3739. 被引量:44

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部