期刊文献+

欠观测条件下的增量容积卡尔曼滤波 被引量:5

Incremental Cubature Kalman Filtering Under Poor Observation Condition
下载PDF
导出
摘要 在工程实践中,由于环境影响、量测设备不稳定等因素,非线性滤波系统中的量测方程可能会出现较大的系统误差,而标准的非线性滤波算法不能消除这类系统误差。针对该问题,假定过程噪声和量测噪声服从高斯分布,利用相邻量测时刻的量测值之差建立增量量测方程,采用3阶球面径向规则获得容积点及其权值。使用容积点对贝叶斯滤波过程中的积分进行数值近似,从而提出增量容积卡尔曼滤波算法。仿真实验结果表明,增量容积卡尔曼滤波算法滤波精度优于标准容积卡尔曼滤波算法与增量卡尔曼滤波算法,能够成功消除量测方程中的系统误差。 In some engineering applications, there are some cases like the effect of environment, the instability of measurement devices. Large error comes into being from the measurement equation in the nonlinear filtering system. The standard nonlinear filtering algorithm cannot remove this kind of system error. This paper addresses this problem,assumes that process noises and measurement noises are subject to Gaussian distribution,establishes the incremental measurement equation using the difference between the adjacent measurements,and obtains the cubature points and its weights using the third-degree spherical-radial rule. The cubature points are employed to approximate the integrals in the Bayesian filtering process numerically,and the incremental cubature Kalman filtering is obtained. Simulation results show that the filtering accuracy of the incremental cubature Kalman filtering is not only better than that of the standard cubature Kalman filtering but also better than that of the incremental extended Kalman filtering. The new algorithm can eliminate the system error of the measurement equation successfully.
出处 《计算机工程》 CAS CSCD 2014年第10期228-231,238,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61201118) 中国博士后科学基金资助项目(2013M532020) 陕西省教育厅科研计划基金资助项目(14JK1304) 国家级大学生创新创业计划基金资助项目(201310709006)
关键词 增量量测方程 增量容积卡尔曼滤波 欠观测条件 卡尔曼滤波 状态估计 深空探测 incremental measurement equation incremental cubature Kalman filtering poor observation condition Kalman filtering state estimation deep space exploration
  • 相关文献

参考文献14

  • 1韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].2版.北京:清华大学出版社,2010.
  • 2Julier S J,Uhlmann J K.UnscentedFiltering and Nonlinear Estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 3Arasaratnam I,Haykin S.Discrete-time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature[J].Proceedings of the IEEE,2007,95(5):953-977.
  • 4Norgaard M,Poulsen N K,Ravn O.NewDevelopments in State Estimation for Nonlinear System[J].Automatica,2000,36(11):1627-163.
  • 5Arulampalam M S,Maskell S,Gordon N,et al.A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 6Arasaratnam I,Haykin S.Cubature KalmanFilters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 7Li Pengfei,Yu Jianping,Wang Mingjie,et al.The Augmented Form of Cubature Kalman Filter and Quadrature Kalman Filter for Additive Noise[C] //Proc.of IEEE Youth Conference on Information,Computing and Telecommunication.[S.l.] :IEEE Press,2009:295-298.
  • 8Chandra K P B,Gu Dawei,Postlethwaite I.Square Root Cubature Information Filter[J].IEEE Sensors Journal,2013,13(2):750-758.
  • 9Arasaratnam I,Haykin S,Hurd R T.Cubature Kalman Filtering for Continuous-discrete Systems:Theory and Simulations[J].IEEE Transactions on Signal Processing,2010,58(10):4977-4993.
  • 10Leong P H,Arulampalam S,Lamahewa T A,et al.A Gaussian-sum Based Cubature Kalman Filter for Bearings-only Tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1161-1176.

二级参考文献49

  • 1Kalman R E. A new approach linear filtering and prediction problems [ J ]. Journal of Basic Engineering ( ASME), 1960, 82D :35-45.
  • 2Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion[ J]. Oki Technical Review, 1997, 63(159) : 1-12.
  • 3Julier S J, Uhlmann J K. Unscented fihering and nonlinear estimation [ J ]. Proceedings of the IEEE, 2004, 92 ( 3 ) : 401-423.
  • 4Sage A P, Husa G W. Adaptive filtering with unknown prior statistics [ C ]. Joint American Control Conference. Boulder: Colorado, 1969: 769-774.
  • 5Pitt M, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94 (446) : 590-599.
  • 6秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:33-48.
  • 7Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion [J]. Oki Technical Review, 1997,63(159) : 1-12.
  • 8Kubota T, Hashimoto T, Kawaguchi J, et al. Navigation guidance and control of asteroid sample return spacecraft : MUSES[C]//Proceedings 4th ESA International Conference on Spacecraft Guidance Navigation and Control Systems. Noordwijk: ESTEC, 2000 : 511-516.
  • 9Tuckness D G, Young S Y. Autonomous navigation for Lunar Trans[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 279-285.
  • 10Raol J R,Sinha N K. On the orbit determination problem[J]. IE Transactions on Aerospace and Electronic Systems, 1985,21 (3) : 274-291.

共引文献57

同被引文献55

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部