期刊文献+

大数据在音乐推荐质量提升中的实践及应用 被引量:3

Big Data Improving Recommendation Quality in Music Applications
下载PDF
导出
摘要 基于音乐推荐的应用实例,探索和实现了大数据如何提高推荐质量的过程及方法。提出通过建立基于RFM模型的用户歌曲综合评分体系,在推荐算法中引入项目稀疏度、重叠度、可信度概念作为调整因子,在混合推荐时引入飙升词、内容标签和二次规则过滤等组合方法以解决推荐系统面临的常见问题,为大数据应用提供具体的参考和指导。 The process and methods of big data improved recommendation quality in music applications werefocused. The individual music score system referring RFM model was described. The sparsity and overlapping andreliability was applied to adjust recommendation algorithm, combined soaring words and content labels and filteringrules with mixing recommendation to resolve the common problems of recommendation system.
出处 《电信科学》 北大核心 2014年第10期43-47,共5页 Telecommunications Science
关键词 大数据 RFM模型 协同过滤推荐 big data, RFM model, collaborative filtering recommendation
  • 相关文献

参考文献5

二级参考文献31

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3Ricci F, Rokach L, Shapira B, et al. Recommender system handbook [M]. New York: Springer, 2011: 1-29.
  • 4Das A, Datar M, Garg A, et al. Google news personalization.. Scalable online collaborative filtering [C]. Canada: Proceedings of the 16th International Conference on World Wide Web, 2007 : 271-280.
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extenstions [J]. TKDE, 2005, 17 (6): 734-749.
  • 6WU J L. Collaborative filtering on the netflix prize dataset [EB/OL ],[2010-08-01]. http://dsec, pku. edu. cn/-jinlong/.
  • 7PAN R, ZHOU Y, CAO B, et al. One-class collaborative filte- ring [C]. Pisa, Italy: Proceedings of the Eighth IEEE Interna- tional Conference on Data Mining, 2008: 502-511.
  • 8PAN R, Martin S. Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering [C]. Paris, France: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.- 667-676.
  • 9ZHOU Y H, Wilkinson D, Schreiber R, et al. Large-scale parallel collaborative filtering for the Netflix prize [C]. Berlin: Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management, 2008: 337-348.
  • 10Srebro N, Rennie J D M, Jaakkola T. Mm, dmurn-margin matrix fac- torization [C]. Vancouver: MIT Press (NIPS), 2004: 1329-1336.

共引文献23

同被引文献63

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部