期刊文献+

微波辐射下活性炭催化甲烷裂解制氢 被引量:1

Microwave-assisted catalytic decomposition of methane over activated carbon for hydrogen production
下载PDF
导出
摘要 采用石英管固定床反应器,在微波加热条件下分别研究了气氛条件、甲烷分压以及铁粉对活性炭催化裂解甲烷的影响,并与传统电加热方式下的甲烷裂解特性进行了对比研究。结果表明,活性炭在不同气氛条件下表现出不同的升温特性,活性炭在氮气和氢气中的升温效果优于甲烷气氛。铁粉的掺入有利于提高活性炭反应温度,从而促进甲烷的转化率。对反应前后的活性炭进行了扫描电镜和比表面积分析,结果表明甲烷裂解后产生的大量积炭覆盖在活性炭表面,导致比表面积和孔容减小,平均孔径增大。进而推测活性炭活性降低的主要原因是由于积炭堵塞了活性炭微孔,减少了甲烷与活性炭微孔中的活性中心位的接触。 The microwave-assisted pyrolysis of methane over an activated carbon (AC) was studied in a fixed-bed quartz-tube reactor. The effects of reaction atmosphere,methane partial pressure and iron powder on methane conversion were investigated. The AC showed better microwave heating performance in N2 or H2 atmosphere than that in CH4 atmosphere. Iron powder could promote microwave heating of the AC,leading to higher methane conversion. SEM results indicated that carbon would deposit on the surface of the AC during methane decomposition. The spent AC had lower surface area,lower pore volume,and larger pore diameter than those of fresh ones,which suggested that carbon deposition in the pores caused deactivation of the AC.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第10期2619-2624,共6页 Chemical Industry and Engineering Progress
基金 中央高校基本科研业务费专项资金项目(14D111311)
关键词 微波 活性炭 甲烷 裂解 催化 microwave activated carbon methane decomposition hydrogen catalysis
  • 相关文献

参考文献18

  • 1Ermakova M A,Ermakov D Y. Ni/SiC>2 and Fe/SiC>2 catalysts forproduction of hydrogen and filamentous carbon via methanedecomposition[J]. Catalysis Today, 2002,77 (3): 225-235.
  • 2Italiano G, Delia A. EsproC,et al. Methane decomposition over Cothin layer supported catalysts to produce hydrogen for fiiel cell[J].International Journal of Hydrogen Energy, 2010. 35 (20):11568-11575.
  • 3Reshetenko T V, Avdeeva LB, Ushakov V A, et al. Coprecipitatediron-containing catalysts (Fe-Al203. Fe-Co-A^Os, Fe-Ni-Al203)for methane decomposition at moderate temperatures. Part II.Evolution of the catalysts in reaction[J]. Applied Catalysis. A :General, 2004, 270 (1-2): 87-99.
  • 4Muradov N Z. COrfree production of hydrogen by catalyticpyrolysis of hydrocarbon fuel[J]. Energy & Fuels, 1998,12 (1):41-48.
  • 5Muradov N Z. Hydrogen via methane decomposition: An applicationfor decarbonization of fossil fuels[J]. International Journal ofHydrogen Energy, 2001,26 (11): 1165-1175.
  • 6Kim M H,Lee E K> Jun J H,et al. Hydrogen production by catalyticdecomposition of methane over activated carbons: Kinetic study [J].International Journal of Hydrogen Energy, 2004, 29 (2): 187-193.
  • 7Moliner R, Suelves R, Lizaro M J, et al. Thermocatalyticdecomposition of methane over activated carbons : Influence oftextural properties and surface chemistry[J]. International Journal ofHydrogen Energy, 2005, 30 (3): 293-300.
  • 8Suelves I,Pinilla JL, Lazaro M J, et al. Carbonaceous materials ascatalysts for decomposition of methane [J]. Chemical EngineeringJournal, 2008, 140 (1): 432-438.
  • 9Perry W L, Datye A K, Prinja A K. et al. Microwave heating ofendothermic catalytic reactions: Reforming of methanol[J]. AIChEJournal, 2002,48 (4): 820-831.
  • 10Cooney DO,Xi Z. Production of hydrogen from methane andmethane/team in a microwave irradiated char-loaded reactor[J]. FuelScience & Technology Internationale 1996,14 (8): 1111-1141.

二级参考文献13

  • 1Bjom Gaudemack, Steinar Lynum. Hydrogen from nature gas without release of CO2 to the atmosphere[J]. Int J Hydrogen Energy, 1998,23 : 1087-1093.
  • 2Lewandowski A. Performance characterization of the SERI high-flux solar furnace [ J ]. Solar Energy Materials, 1991,24 : 550-563.
  • 3Jaimee Dahl, Karen Buechler, Kyan Finley, et al. Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor[ A]. In :Proceedings of the 2002 US DOE Hydrogen Program Review [ C ]. NREL/CP-610-32405,2002.
  • 4Meir Kogan, Abraham Kogan. Production of hydrogen and carbon by solar thermal methane splitting(I) :The unseeded reactor[ J]. lnt J Hydrogen Energy, 2003,28 : 1187-1198.
  • 5Zhang Tiejun, Amiridis M D. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts [ J ]. Appl Catal A : General, 1998,167 : 161 -172.
  • 6Choudhary T V, Goodman D W. CO-free production of hydrogen via stepwise steam reforming of methane [ J ]. J Catal , 2000,192:316-321.
  • 7Monnerat B, Kiwi-Minsker L, Renken A, et al. Hydrogen production by catalytic cracking of methane ovemickel gauze under periodic reactor operation [J]. Chem Eng Sci, 2001,56:633-639.
  • 8Choudhary V R, Banerjee S, Rajput A M, et al. Hydrogen from step-wise steam reforming of methane over Ni/ZrO2:factors affecting catalytic methane decomposition and gasification by steam of carbon formed on the catalyst [ J ]. Appl Catal A : Gervera1,2002 ,234 : 259-270.
  • 9Muradov N. Hydrogen via methane decomposition : An application for decarbonization of fossil fuels [ J ]. lnt J Hydrogen Energy,2001,26 : 1165-1175.
  • 10Muradov N. Catalysis of methane decomposition over elemental carbon [ J ]. Catal Commun, 2001,2 : 89-94.

共引文献7

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部