期刊文献+

Perfect Spin-Filtering in 4H-TAHDI-Based Molecular Devices: the Effect of N-Substitution

Perfect Spin-Filtering in 4H-TAHDI-Based Molecular Devices: the Effect of N-Substitution
下载PDF
导出
摘要 Based on the non-equilibrium Green's function formalism and spin-polarized density functional theory calcula- tions, we investigate the spin transport properties of HDI and terahydrotetraazahexaeene diimide (4H-TAHDI) with two ferromagnetic zigzag-edge graphene nanoribbon electrodes. Compared with ttDI, four carbon atoms in the hexacene part of 4H-TAHDI are substituted by nitrogen atoms. The results show that the nitrogen substitu- tion can improve significantly the spin-filtering performance and 4H-TAHDI can be used as a perfect spin filter. Our study indicates that suitable chemical substitution is a possible way to realize high-efficiency spin filters. Based on the non-equilibrium Green's function formalism and spin-polarized density functional theory calcula- tions, we investigate the spin transport properties of HDI and terahydrotetraazahexaeene diimide (4H-TAHDI) with two ferromagnetic zigzag-edge graphene nanoribbon electrodes. Compared with ttDI, four carbon atoms in the hexacene part of 4H-TAHDI are substituted by nitrogen atoms. The results show that the nitrogen substitu- tion can improve significantly the spin-filtering performance and 4H-TAHDI can be used as a perfect spin filter. Our study indicates that suitable chemical substitution is a possible way to realize high-efficiency spin filters.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第10期116-119,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11104115 and 11374183, the Science Foundation of Middle-aged and Young Scientist of Shandong Province under Grant No BS2013DX036, and the Doctoral Foundation of University of Jinan under Grant No XBS1004.
  • 相关文献

参考文献37

  • 1Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnr S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488.
  • 2Zeng J, Chen K Q and Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032.
  • 3Wu Q H, Zhao P and Liu D S 2014 Chin. Phys. Lett. 31 067302.
  • 4Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821.
  • 5Schmaus S, Bagrets A, Nahas Y, Yamada T K, Bork A, Bowen M, Beaurepaire E, Evers F and Wulfhekel W 2011Nat. Nanotechnol. 6 185.
  • 6Sarkar S, Tarafder K, Oppeneer P M and Saha-Dasgupta T 2011 J. Mater. Chem. 21 13832.
  • 7Hao H, Zheng X H, Song L L, Wang R N and Zeng Z 2012 Phys. Rev. Lett. 108 017202.
  • 8Smirnov S and Grifoni M 2011 Phys. Rev. B 84 235314.
  • 9Smirnov S and Grifoni M 2012 Phys. Rev. B 85 195310.
  • 10Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部