摘要
A dual probe, i.e., high resolution scanning piezo-thermal microscopy, is developed and employed to characterize the local piezoresponse and thermal behaviors of ferroelastic domains in multiferroic BiFeO3 thin films. Highly in- homogeneous piezoelectric responses are found in the thin film. A remarkably local thermal transformation across ferroelastic domain walls is clearly demonstrated by the quantitative 3w signals related to thermal conductivity. Different polarization oriented ferroelastic domains are found to exhibit different local thermal responses. The underlying mechanism is possibly associated with the inhomogeneous stress distribution across the ferroelastic domain wails, leading to different phonons scattering contributions in the BiFeO3 thin film.
A dual probe, i.e., high resolution scanning piezo-thermal microscopy, is developed and employed to characterize the local piezoresponse and thermal behaviors of ferroelastic domains in multiferroic BiFeO3 thin films. Highly in- homogeneous piezoelectric responses are found in the thin film. A remarkably local thermal transformation across ferroelastic domain walls is clearly demonstrated by the quantitative 3w signals related to thermal conductivity. Different polarization oriented ferroelastic domains are found to exhibit different local thermal responses. The underlying mechanism is possibly associated with the inhomogeneous stress distribution across the ferroelastic domain wails, leading to different phonons scattering contributions in the BiFeO3 thin film.
基金
Supported by the National Basic Research Program of China under Grant No 2012CB933004, the National Natural Science Foundation of China under Grant Nos 51121064 and 51402328, and the Nanotechnology Project of Shanghai Science and Technology Committee under Grant No 11nm0502800.