期刊文献+

基于模糊-神经网络的公交出行不确定性研究 被引量:1

Transit Trip Generation Uncertainty Based on Fuzzy Neural Networks
下载PDF
导出
摘要 为了合理规划公交线路,优化公交路网,提高乘客的舒适性,在交通工程学、模糊理论的指导下,通过对影响公交出行的主要因素定性分析,确定了影响出行生成量的模糊因素;结合对某地公交出行实地调研,分析出影响因素与出行量之间的相互关系规律;并采用空间静态模糊预测方法对调研数据进行处理,从而得到公交出行中快捷、舒适、方便、安全的隶属度,最后结合BP人工神经网络预测出该地区的公交出行生成量,为交通设施的建设提供了理论依据. There are certainty factors and uncertainty factors that influence the transit trip generation. Under the guidance of Traffic Engineering and fuzzy theory, for the purpose of planning the bus lines rationally and optimizing the transit network and making passengers feel more comfortable in their travel, the major factors that influence the trip generation were analyzed and the fuzzy factors were identified. With the help of spot investigation of transit trips in a certain place, this paper analyzed the relationship between the influential factors and trip generation. The static fuzzy prediction methods were employed to get the membership of speed, comfort, convenience and security. Finally, the BP Artificial Neural network was utilized to predict the regiong travel traffic. This paper intends to provide a theoretical basis for the development of public transit facilities in a region.
出处 《道路交通与安全》 2014年第4期11-15,共5页 Road Traffic & Safety
基金 交通运输部科技项目 交通部科技计划(2011 318 223 1330)
关键词 公交出行 预测 不确定性 模糊 神经网络 transit trip prediction uncertainty fuzzy neural network
  • 相关文献

参考文献5

二级参考文献37

  • 1石峰,杜鹏飞,张大伟,宋科,陈吉宁.滇池流域大棚种植区面源污染模拟[J].清华大学学报(自然科学版),2005,45(3):363-366. 被引量:19
  • 2刘江,荣建,任福田.基于可变减速时间的通行能力理论模型研究[J].武汉理工大学学报(交通科学与工程版),2005,29(6):891-894. 被引量:5
  • 3Harmel R D, Cooper R J, Slade R M, et al. Cumulative uncertainty in measured streamflow and water quality data for small watersheds [J]. Trans ASABE, 2006, 49(3): 689 - 701.
  • 4Sohrabi T M, Shirmohammadi A, Montas H, et al, Uncertainty in nonpoint source pollution models and associated risks[J].Enviro Forensics, 2002, 3(2): 179- 189.
  • 5Kao J J, Hong H J. NPS model parameter uncertainty analysis for an off-stream reservoir [J]. Water Resources Bulletin, 1996, 32(5) : 1067 - 1079.
  • 6Mcfarland A M, Hauck L M. Determining nutrient export coefficients and source loading uncertainty using in-stream monitoring data [J]. J Ame Water Resources Assoc, 2001, 37(1): 223 - 236.
  • 7Beven K, Binley A. The future of distributed models: Model calibration and uncertainty predication[J]. Hydrological Process, 1992, 6: 279-298.
  • 8Bratley P, Fox B. Algorithm 659: Implementing Sobol's quasirandom sequence generator [J].ACM Trans Math Software, 1988, 14(1): 88-100.
  • 9Karaivanova A, Dimov I, Ivanovska S, et al. A quasi-Monte Carlo method for integration with improved convergence [J]. Large-Scale Scientific Computing, 2001, 2179:158 -165.
  • 10LIN JengShiaw, HWANG Chyi. Enhancement of the global convergence of using iterative dynamic programming to solve optimal control problems[J]. Indu & Eng Chem Res, 1998, 37(6) : 2469 - 2478.

共引文献12

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部