摘要
该文提出了一种融合格框架的日汉基于语块的依存树到串统计机器翻译模型。其基本思想是从日语依存分析树获取格框架,在翻译模型的规则抽取及解码中,以日语格框架作为约束条件,指导依存树的句法结构重排,调整日语和汉语的句法结构差异,实现格框架与日汉依存树到串模型的融合。实验结果表明,该文提出的方法可有效改善日汉统计机器翻译的句法结构调序和词汇翻译,同时,还可有效提高日汉统计机器翻译的译文质量。
This paper proposes a method to integrate case frame into Japanese to Chinese chunk-based dependency-to- string model. Firstly, case frames are acquired from Japanese chunk-based dependency analysis results. Secondly, case frames are used to constrain the rule extraction and the decoding in chunk-based dependency to string model. Experimental results show that the proposed method performs well on long structural reordering and lexicai translation, and achieves better performance than hierarchical phrase-based model and word-based dependency-to-string model on Japanese to Chinese test sets.
出处
《中文信息学报》
CSCD
北大核心
2014年第5期133-140,161,共9页
Journal of Chinese Information Processing
基金
国家自然科学基金(61370130)
国家国际科技合作专项资助(No.2014DFA11350)
北京交通大学人才基金(2011RC034)
关键词
日汉机器翻译
格框架
依存树到串模型
句法结构
Japanese to Chinese SMT
case frame
dependency-to-string model
syntax structure