摘要
事件关系检测是一项面向事件之间逻辑关系的自然语言处理技术。事件关系识别的核心任务是以事件为基本语义单元,通过分析事件的篇章结构信息及语义特征,实现事件逻辑关系的深层检测。该文首次建立一套事件关系检测的任务和研究体系,包括任务定义、关系体系划分、语料采集与标注、评价方法等。同时,该文提出了一种跨场景推理的事件关系检测方法,该方法认为,具有相同事件场景的"事件对",往往具有相同的事件关系类型。该文提出的基于跨场景推理的事件关系检测方法在针对四大类事件关系类型的检测精确率为54.21%。
Event relation detection aims to detect a logical relation between pairwise events. The key to event relation detection is to detect latent logical relation between events by analyzing the corresponding discourse structure and se- mantic features of events, with the techniques of semantic relation recognition and inference. In this paper, we build an overall framework of the event relation detection task, including task definition, relation hierarchical structure, corpora acquisition and evaluation. Meanwhile, we propose a cross-scenario inference method to predict relation be- tween pairwise events, which follows the basic hypothesis that if events express the same scenarios, they normally trigger similar relations. Finally, we experiment on four general semantic relations, Expansion, Comparison, Con- tingency and Temporal, achieving an accuracy of 54.21%.
出处
《中文信息学报》
CSCD
北大核心
2014年第5期206-214,共9页
Journal of Chinese Information Processing
基金
国家自然科学基金(61373097
61272259
61272260
90920004)
教育部博士学科点专项基金(2009321110006
20103201110021)
江苏省自然科学基金(BK2011282)
江苏省高校自然科学基金重大项目(11KJA520003)
苏州市自然科学基金(SH201212)