期刊文献+

Permanence of Metric Sparsification Property under Finite Decomposition Complexity

Permanence of Metric Sparsification Property under Finite Decomposition Complexity
原文传递
导出
摘要 The notions of metric sparsification property and finite decomposition complexity are recently introduced in metric geometry to study the coarse Novikov conjecture and the stable Borel conjecture. In this paper, it is proved that a metric space X has finite decomposition complexity with respect to metric sparsification property if and only if X itself has metric sparsification property. As a consequence, the authors obtain an alternative proof of a very recent result by Guentner, Tessera and Yu that all countable linear groups have the metric sparsification property and hence the operator norm localization property.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第5期751-760,共10页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11231002,10971023,10901033,61104154) the Fundamental Research Funds for Central Universities of China the Shanghai Shuguang Project(No.07SG38)
关键词 Metric space Metric sparsification Asymptotic dimension Decomposi- tion complexity Permanence property 稀疏性 复杂性 分解 公制 财产权 度量几何 度量空间 操作规范
  • 相关文献

参考文献10

  • 1Bell,G.C.and Dranishnikov,A.,On asymptotic dimension of groups,Algeb.Geom.Topol.,1,2001,57-71.
  • 2Bell,G.C and Dranishnikov,A.,On asymptotic dimension of groups acting on trees,Geom.Dedicata,103(1),2004,89-101.
  • 3Chen,X.M.,Tessera,R.,Wang,X.J.and Yu,G.L.,Metric sparsification and operator norm localization,Adv.Math.,218(5),2008,1496-1511.
  • 4Chen,X.M.and Wang X.J.,Operator norm localization property of relatively hyperbolic groups and graphs of groups,J.Funct.Anal.,255(3),2008,642-656.
  • 5Chen,X.M.,Wang,Q.and Wang,X.J.,Operator norm localization property of metric spaces under finite decomposition complexity,J.Funct.Anal.,257(9),2009,2938-2950.
  • 6Gong,G.H,Wang,Q.and Yu,G.L.,Geometrization of the strong Novikov conjecture for residually finite groups,J.Reine Angew.Math.,621(1),2008,159-189.
  • 7Gromov,M.,Asymptotic invariants of infinite groups,Geometric Group Theory,Vol.2,London Math.Soc.,Lecture Notes Series,Vol.182,G.A.Niblo and M.A.Roller (eds.),Cambridge University Press,Cambridge,1993.
  • 8Guentner,E.,Higson,N.and Weinberger,S.,The Novikov conjecture for linear groups,Publ.Math.Inst.Hautes Tudes Sci.,101(1),2005,243-268.
  • 9Guentner,E.,Tessera,R.and Yu,G.L.,A notion of geometric complexity and its application to topological rigidity,Invent.Math.,189(2),2011,1-43.
  • 10Guentner,E.,Tessera,R.and Yu,G.L.,Operator norm localization for linear groups and its applications to K-Theory,Adv.Math.,226(4),2011,3495-3510.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部