期刊文献+

利用水华微藻生物质去除水中Cr(Ⅵ)离子的研究 被引量:1

Cr(Ⅵ) Removal from Aqueous Solution Using Alive Bloom Algae Biomass
下载PDF
导出
摘要 将野生水华微藻生物质作为吸附材料去除水中Cr(Ⅵ)离子。实验发现温度对去除效率没有显著影响,而pH值和Cr(Ⅵ)离子去除率呈严格负相关。在微藻吸附剂浓度为5.0 g/L、温度25℃、pH值5.0和初始Cr(Ⅵ)离子浓度30.0 mg/L条件下,经过2次吸附可以将水中Cr(Ⅵ)离子降低到0.45 mg/L,去除率达到98.5%。进一步分析表明,溶液中Cr(Ⅵ)浓度随着吸附时间逐步下降,Cr(Ⅲ)浓度会随着吸附时间逐步上升,逐渐接近总Cr浓度,这表明吸附过程中微藻生物质会将部分Cr(Ⅵ)还原成Cr(Ⅲ)。本研究表明,野生水华微藻生物质是一种低成本的吸附材料,可以用于去除废水中Cr(Ⅵ)离子。 Bloom algae biomass was collected and employed as adsorbent for Cr (Ⅵ) removal from aqueous solution. The tests indicate that temperature has no significant influence on adsorption efficiency, while pH of aqueous solution has a strict negative relation with removal rate of Cr (Ⅵ). The final concentration of Cr (Ⅵ) was reduced to 0.45 mg/L amounting to 98.5% removal rate of initial 30.0 mg/L Cr (Ⅵ) at 25 ℃ and pH 5.0 after twice repeated adsorptions using 5.0 g/L algae biomass. Further analysis finds that concentration of Cr (Ⅲ) increased with adsorption process and reached the value of total content of Cr gradually, indicating redox reaction occurred on the surface of algae cells and Cr(Ⅲ ) was generated from Cr(Ⅵ) partly. The study indicates that bloom algae biomass could be used as a low-cost bio-adsorption materials for Cr(Ⅵ) removal from wastewater.
出处 《环境科学与技术》 CAS CSCD 北大核心 2014年第10期73-76,85,共5页 Environmental Science & Technology
基金 国家重大科技专项(2009ZX07104-002) 国家自然科学基金(21306233)
关键词 Cr(Ⅵ) 生物吸附 水华微藻 Cr(Ⅵ) biosorption bloom algae
  • 相关文献

参考文献16

  • 1Srivastava NK, Majumder CB. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater [J]. J Hazard Mater,2008, 151(1): 1-8.
  • 2刘戈宇,柴团耀,孙涛.超富集植物遏蓝菜对重金属吸收、运输和累积的机制[J].生物工程学报,2010,26(5):561-568. 被引量:30
  • 3张建梅.重金属废水处理技术研究进展(综述)[J].西安联合大学学报,2003,6(2):55-59. 被引量:59
  • 4Davis T A, Volesky B, Mucci A. A review of the biochem- istry of heavy metal biosorption by brown algae[J].Water Res,2003, 37(18): 4311-4330.
  • 5Shroff K A, Vaidya V K. Effect of pre-treatments on biosorption of Ni ( Ⅱ ) by dead biomass of Mucor hiemalis[J]. Eng Life Sci, 2011, 11(6): 588-597.
  • 6Fourest E, Roux J C. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH [J]. Appl Microbiol Biotechnology, 1992, 37(3): 399-403.
  • 7Keskinkan O, Goksu M Z L, Yuceer A, et al. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum)[J]. Process Biochem, 2003, 39(2): 179-183.
  • 8Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+ using dried marine green macroalgae Caulerpa lentillifera[J].Bioresour Technol,2006,97(18):2321 - 2329.
  • 9Congeevaram S, Dhan arani S, Park J, et al. Biosorption of chromium and nickel by heavy metal resistant fungal and ba-cterial isolates[J]. J Hazard Mater, 2007, 146(1): 270-277.
  • 10Keskinkan O, Goksu M Z L, Basibuyuk M. Heavy metal ad- sorption properties of a submerged aquatic plant(Ceratophyl- lum demersum)[J].Bioresour Technol,2004,92(2): 197-200.

二级参考文献67

共引文献99

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部