期刊文献+

基于结构化约束的多视角人体检测方法 被引量:1

Multi-View Body Structure-Constrainted Human Detection Method
下载PDF
导出
摘要 针对单视角下信息量不足以及多视角不同视角间信息关联困难的问题,提出了基于结构化约束的多视角人体检测方法.首先通过基于块的人体检测模型获取人体局部块信息;然后采用空间仿射变换将不同视角下重叠区域通过变换矩阵的映射关系关联起来;最后针对仿射变换后的区域因遮挡或者存在多目标导致多视角目标关联困难的问题,利用人体局部显著块间的结构化约束为多视角目标匹配构造最大后验概率模型,通过最优求解获取多视角目标匹配结果.实验结果表明,该方法能够利用多视角信息来有效弥补单视角下人体检测中出现的遮挡问题,显著提高了人体检测效果. To solve the problems of lack of information in single-view and the difficulty in information correspon-dence in different views,a multi-view body structure-constrainted human detection method was proposed. First, part-based human detection model is implemented to obtain the information on human body part. Then leverage spatial affine transform to correlate the overlapping regions in different views. Finally,to overcome the challenge of object corresponding in multi-view environment caused by partial occlusion and multiple target existence in neighborhood, the model of maximum a posterior(MAP)isdeveloped for multi-view object matching by taking advantage of the body structure constraints. The multi-view object matching result can be achieved by optimizing the objective function of the modal.The experimental results show that the proposed method can improve human detection by efficiently using multi-view cues to avoid partial occlusion in single-view.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2014年第9期753-758,共6页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61100124 21106095 61202168 61170239) 天津市应用基础与前沿技术研究计划资助项目(10JCYBJC25500)
关键词 多视角 结构化约束 仿射变换 最大后验概率 目标匹配 multi-view structural-constraint affine transform maximum a posterior (MAP) object matching
  • 相关文献

参考文献17

  • 1Rossi M, Bozzoli A. Tracking and counting moving people[C]// IEEE International Conference on Image Processing. Austin, USA, 1994: 212-216.
  • 2Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMl), 2003, 25(10): 1337- 1342.
  • 3Yoon Sang Min, Kim Hyunwoo. Real-time multiple people detection using skin color, motion and appear- ante information [C]//13 th IEEE International Workshop on Robot and Human Interactive Communication. Kura- shiki, Okayama, Japan, 2004: 331-334.
  • 4Dalai N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance [C]//Euro- pean Conference on Computer Vision (ECCV). Graz, Austria, 2006: 7-13.
  • 5Cucchiara R, Grana C, Piccardi M, et al. Using boosted features for the detection of people in 2D range data [C]//2007 IEEE International Conference on Robot- ics andAutomation. Beijing, China, 2007: 3402-3407.
  • 6Chakraborty Bhaskar, Rudovic Ognjen, Gonz'alez Jordi. View-invariant human-body detection with exten- sion to human action recognition using component-wise HMM of body parts [C]//8th IEEE International Confer- ence on Automatic Face and Gesture Recognition. Am- sterdam, the Netherlands, 2008: 1-6.
  • 7Garcia-Mart[nAlvaro, Hauptmann Alex, Jos6 M Marti- nez. People detection based on appearance and motion models[C]// 8th 1EEE International Conference on Ad- vanced Video and Signal-Based Surveillance(AVSS). Klagenfurt, Austria, 2011: 256-260.
  • 8Zhang Zhengzhi, Kodagoda K R S. Multi-sensor ap- proach for people detection [C] // Proceedings of the 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing Conference. Mel-bourne, Australia, 2005: 355-360.
  • 9Ros J, Mekhnacha K. Multi-sensor human tracking with the Bayesian occupancy filter[C]//16th International Conference on Digital Signal Processing. Santorini, Greece, 2009: 1-8.
  • 10Dockstader S, Tekalp A M. Multiple camera tracking of interacting and occluded human motion [J]. Proceedings ofthelEEE, 2001, 89(10): 1441-1455.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部