期刊文献+

基于WLAN移动定位的个性化商品信息推荐平台 被引量:2

Personalized WeChat recommendation system based on indoor WLAN localization
下载PDF
导出
摘要 随着WLAN在室内环境的日益普及,基于现代的移动设备可以方便实时地获取各种有价值的WLAN数据,这对我们识别个体日常生活中的多样化行为提供了前所未有的机会。近年来,用户的兴趣点与行为模式挖掘等领域日益引起各界的广泛关注,设计了一套基于室内定位的推荐系统,基于用户的历史访问记录,实现从过载的信息中识别出用户感兴趣的内容。现有的位置服务通常只针对用户的室外位置数据,缺乏对室内数据的挖掘分析,忽略了室内位置数据中蕴含的大量语义信息。利用室内定位技术获取用户在商场中的活动轨迹,根据用户去过的店铺和浏览过的商品等历史信息,估算用户的兴趣爱好并进而向用户个性化地推荐感兴趣的商品,基于以上思路设计实现了一套基于室内定位和微信平台的个性化商品推荐系统。 With the popularity of WLAN (Wireless Local Area Networks) indoors, mobile devices can easily get real-time access to it, which provides us an unprecedented opportunity to understand indi- vidual behavior in everyday life. Recently, mining persons' point of interest and behaviors attracts more attentions. A WeChat recommendation system based on indoor WLAN localization is proposed, which uses users' historical information to obtain users' interest from the overload information. Existing loca- tion services usually aim for users' outdoor location data, lack analyzing indoor data through mining, and ignore an amount of semantic information in users' location data. The users' activities are traced by the indoor positioning technology. According to the shops which users visited and the products users saw, users' interest is estimated so as to recommend users for personalized products that may interest them. Based on the above work, we design a personalized product recommendation system based on indoor WLAN localization and the WeChat platform.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第10期1925-1931,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61173066) 国家青年科学基金资助项目(41201410) 广东省战略性新兴产业发展专项资金资助项目(2011912030)
关键词 兴趣点发现 K近邻 微信 室内定位 推荐系统 point of interest k-nearest neighbor algorithm Wechat indoor location recommended system
  • 相关文献

参考文献15

  • 1Cacheda F,Carneiro V,Fernández D,et al.Comparison of collaborative filtering algorithms:Limitations of current techniques and proposals for scalable,high-performance recommender systems[J].ACM Transactions on the Web(TWEB),2011,5(1):2.
  • 2刘军发,谷洋,陈益强,曹彧姝.具有时效机制的增量式无线定位方法[J].计算机学报,2013,36(7):1448-1455. 被引量:14
  • 3赵咪,刘军发,陈益强,周经野,杨华.基于定向信号补偿的免标定室内定位方法[J].计算机工程,2012,38(1):276-278. 被引量:3
  • 4罗军舟,吴文甲,杨明.移动互联网:终端、网络与服务[J].计算机学报,2011,34(11):2029-2051. 被引量:273
  • 5Chen X,Liu X,Huang Z,et al.Regionknn:A scalable hybrid collaborative filtering algorithm for personalized web service recommendation[C]∥Proc of 2010IEEE International Conference on Web Services(ICWS),2010:9-16.
  • 6周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171. 被引量:171
  • 7Kwon J,Dundar B,Varaiya P.Hybrid algorithm for indoor positioning using wireless LAN[C]∥Proc of 2004IEEE the60th Vehicular Technology Conference,2004:4625-4629.
  • 8Zheng Y,Xie X,Ma W Y.GeoLife:A collaborative social networking service among user,location and trajectory[J].IEEE Data Eng Bull,2010,33(2):32-39.
  • 9Do T M T,Gatica-Perez D.The places of our lives:Visiting patterns and automatic labeling from longitudinal smartphone data[J].IEEE Transactions on Mobile Computing,2014,13(3):638-648.
  • 10Xiao H,Wang W J,Zhang X.Identifying the stay point using GPS trajectory of taxis[J].Applied Mechanics and Materials,2013(353-356):3511-3515.

二级参考文献267

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2郑相全,郭伟,葛利嘉,刘仁婷.一种基于跨层设计和蚁群优化的自组网负载均衡路由协议[J].电子学报,2006,34(7):1199-1208. 被引量:12
  • 3中国互联网络信息中心.第27次中国互联网络发展状况统计报告,2011,(27):18-20.
  • 4Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 5Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 6Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 7Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 8Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 9Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 10Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.

共引文献448

同被引文献10

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部