摘要
PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2a phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact^-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact^-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.
PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2a phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact^-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact^-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.