期刊文献+

两类阴极菌群微生物燃料电池降解硝酸盐研究 被引量:2

Biocathode degradation of nitrate by two different cathode floras of microbial fuel cells
下载PDF
导出
摘要 文章以硝酸盐溶液为阴极的电子受体,在阴极室中分别接种活性污泥混合菌和纯反硝化单菌株,构成生物阴极微生物燃料电池(microbial fuel cell,简称MFC)A-MFC和B-MFC。实验结果表明:在外接电阻为100Ω情况下,A-MFC和B-MFC最大输出电压分别为119.6mV和117.2mV,硝酸盐在B-MFC阴极室的平均反硝化速率为2.19mg/(L·d),比A-MFC中的平均反硝化速率1.86mg/(L·d)略高;扫描电镜观察到A-MFC和B-MFC的阴极碳布纤维丝表面形貌存在差异,A-MFC中碳布被孔状结构物覆盖,而B-MFC阴极碳布被片层状结构物所覆盖;同时发现A-MFC的阴极碳布循环伏安法CV曲线上均出现了明显的还原峰,表明A-MFC阴极碳布上的微生物进行了催化还原反应,而且阴极溶液均出现1对明显的氧化还原电对,说明阴极溶液中确实存在氧化还原介体进行微生物与电极间传递电子。 With the nitrate solution as the electron acceptor ,mixed bacteria from activated sludge and pure denitrifying bacteria were inoculated in the cathode chamber ,and two kinds of biocathode micro-bial fuel cells(MFCs) named A-MFC B-MFC were built .The experimental results showed that the maximum output voltages of A-MFC and B-MFC were 119.6 mV and 117.2 mV respectively when the external resistance was 100 Ω .The average denitrification rate in B-MFC was 2.19 mg/(L · d) and the average denitrification rate in A-MFC was 1.86 mg/(L · d) .The cathode carbon cloth surface morphology of A-MFC was different from that of B-MFC according to scanning electron microscope observation ,and the carbon cloth in A-MFC was covered by macroporous structure ,however the car-bon cloth in B-MFC was covered by lamellar structure .It was also found that there were an obvious reduction peak in the cyclic voltammetry(CV) curve of A-MFC cathode carbon cloth and an oxidation-reduction pair in the cathode solution of A-MFC .The results showed that there were catalytic reduc-tion reaction in A-MFC and there was electron transferring between microorganisms and cathode elec-trode in solution .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第10期1168-1172,1225,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(41372246)
关键词 微生物燃料电池 硝酸盐 生物阴极 电子传递 菌群 microbial fuel cell(MFC) nitrate biocathode electron transferring flora
  • 相关文献

参考文献13

  • 1Logan B E,Rabaey K. Conversion of wastes into bioelectric- ity and chemicals using microbial electrochemical technolo- gies[J]. Science, 2012,337 : 686- 690.
  • 2Ren Zhiyong, Ward T E, Rfgan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environmental Science b- Technology, 2007,41 (13) :4781-4786.
  • 3丁巍巍,汪家权,吕剑,夏雪兰.微生物燃料电池处理苯酚废水[J].合肥工业大学学报(自然科学版),2010,33(1):94-96. 被引量:16
  • 4Wen Qing,Wu Ying, Zhao Lixin, et al. Production of elec- tricity from the treatment of continuous brewery wastewater using a microbial fuel cell [J]. Fuel, 2010, 89 (7):1381-1385.
  • 5Luo Haiping, Liu Guangli, Zhang Renduo, et al. Phenol deg- radation in microbial fuel cells [J], Chemical Engineering Journal, 2009,147 (2/3) : 259 - 264.
  • 6Hou Bin, Hu Yongyou, Sun Jian. Performance and microbial diversity of microbial fuel cells coupled with different cath- ode types during simultaneous azo dye decolorization and e- lectricity generation [J]. Bio:'esource Technology, 2012, 111:105-110.
  • 7Park H I,Kim D K,Choi Y J,et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor[J]. Process Biochem, 2005,40: 3383- 3388.
  • 8Stares A J,De Bok F A,Plngge C M,et al. Exocellular elec-tron transfer in anaerobic microbial communities[J]. Envi- ron Microbial, 2006,8 (3) : 371 - 382.
  • 9Holmes D E, Bond D R, O ' Neill R A, et al. Microbial com- munities associated with electrodes harvesting electricity from a variety of aquatic sediments [J]. Microbial Ecology, 2004,48(2) :178-190.
  • 10Chen G W, Choi S J, Cha J H, et al. Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells [J]. Korean J Chem Eng, 2010, 27 (5): 1513-1520.

二级参考文献10

共引文献29

同被引文献72

  • 1贾璐维,赵剑强,胡博,赵慧敏,黄楠.MFC强化同步短程硝化反硝化工艺的启动[J].环境工程学报,2015,9(4):1831-1836. 被引量:3
  • 2许玫英,郭俊,岑英华,孙国萍.染料的生物降解研究[J].微生物学通报,2006,33(1):138-143. 被引量:54
  • 3周良,刘志丹,连静,李福生,杜竹玮,李浩然.利用微生物燃料电池研究Geobacter metallire ducens异化还原铁氧化物[J].化工学报,2005,56(12):2398-2403. 被引量:10
  • 4LOGANBE, HAMELERSB, ROZENDALR, etal. Microbial fuel cells methodology and technology [J]. Environmental Science Technology, 2006, 40 (17): 5181-5192.
  • 5LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber mierobialfuelcell[J]. Environmental Science & Technology, 2004, 38 (7): 2281-2285.
  • 6LIU X W, LI W W, YU H Q. Cathodic catalysts in bioelectrochemieal systems for energy recovery from wastewater[J]. Chemical Society Reviews, 2014, 43 (22) : 7718-7745.
  • 7ZHANG F, HE Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell[J]. Process Biochemistry, 2012, 47 (22): 2146-2151.
  • 8PARK D H, LAIVENIEKS M, GUETTLERMV, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and EnviromnentalMierobiology, 1999, 65 (7): 2912-2917.
  • 9HOLMES D E, BOND D R, O'NEIL R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial Ecology, 2004, 48 (2): 178-190.
  • 10PUIG S, COMA M, DESLOOVER J, et al. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science & Technology, 2012, 46 (4): 2309-2315.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部