期刊文献+

一种不确定数据的朴素贝叶斯分类方法

A naive Bayes classification method for uncertain data
下载PDF
导出
摘要 针对不确定性数据的分类问题,提出一种基于直方图估计的不确定性朴素贝叶斯分类器(HU-NBC).基于直方图估计的思想,建立估计不确定性数据概率密度函数的数学模型,并利用该模型估计不确定性朴素贝叶斯分类器的类条件概率密度函数.实验结果表明,与同类型算法相比,基于直方图估计的HU-NBC算法拥有较优的分类精度、较小的时间代价和空间需求,适合解决数据量较大的不确定性数据分类问题. Aiming at the classification problem with uncertain data, a naive Bayes classification method is proposed in this paper-uncertainty naive Bayes classifier based on histogram estimation (HU-NBC). Based on the idea of histogram estimation, an estimation model of novel probability density functions is established for uncertain data and is used to estimate the class-conditional probability density functions of uncertainty naive Bayes classifier. Experimental results on UCI datasets show that HU-NBC has a good classifying accuracy, less runtime and memory requirements compared with existing methods, and it is suitable for classification with large amounts of data.
出处 《江西理工大学学报》 CAS 2014年第5期96-100,共5页 Journal of Jiangxi University of Science and Technology
基金 国家自然科学基金资助项目(41362015) 江西省自然科学基金资助项目(20122BAB201045)
关键词 不确定性数据 朴素贝叶斯 直方图估计 类条件概率密度 分类 uncertain data naive Bayes histogram estimation class- conditional probability density classification
  • 相关文献

参考文献13

  • 1Ren J, Lee S D, Chen X, et al. Naive Bayes classification of uncertain data [C]//Agarwall D.Data Mining, 2009. ICDM'09. Ninth IEEE International Conference mr Miami, FL : IEEE, 2009: 944-949.
  • 2Biao Qin, Xia Yuni, Wang Shah, et al. A novel Bayesian classification for uncertain data [J]. Knowledge-Based Systems, 2011, 24(8): 1151-1158.
  • 3李晶皎,王爱侠,王骄,等.模式识别[M].北京:电子工业出版社,2012.
  • 4Ramoni M, Sebastiani P. Robust hayes classifiers [J]. Artificial Intelligence, 2001, 125(1): 209-226.
  • 5Aggarwal C C, Yu P S. A survey of uncertain data algorithms and applications [J]. IEEE Transactions on Knowledge and Data Enffmeering, 2009, 21(5): 609-623.
  • 6周傲英,金澈清,王国仁,李建中.不确定性数据管理技术研究综述[J].计算机学报,2009,32(1):1-16. 被引量:185
  • 7Tsang S, Kao B, Yip K Y, et al. Decision trees for uncertain data[J]. Knowledge and Data Engineering, IEEE Trans, 2011, 23 (1): 64- 78.
  • 8Zhang T Bi J. Support vector classification with input data uncertainty [C]//Saul LK.Advances in Neural Information Processing Systems 17, Proceedings of the 2004 Conference. Cambridge, MA: MIT Press, 2005, 17:161.
  • 9Yang Jianqiang, Gunn S. Exploiting uncertain data in support vector classification [C]//Apolloni B.Knowledge-Based Intelligent Information and Engineering Systems. Berlin Heidelberg: Springer, 2007: 148-155.
  • 10丹辉,寒青.非参数统计:方法与应用[M].北京:中国统计出版社.2009.

二级参考文献123

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 3Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 4Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 5Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 6Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188
  • 7Cavallo R, Pittarelli M. The theory of probabilistic databases//Proceedings of the 13th International Conference on Very Large Data Bases. Brighton, 1987:71-81
  • 8Barbara D, Garcia-Molina H, Porter D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 1992, 4(5): 487-502
  • 9Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32-66
  • 10Zimanyi E. Query evaluation in probabilistic databases. Theoretical Computer Science, 1997, 171(1-2): 179-219

共引文献306

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部