期刊文献+

偶数阶Unitary Cayley图的零化度

On the Nullity of Even-Order Unitary Cayley Graphs
下载PDF
导出
摘要 n阶Unitary Cayley图的顶点集是Zn={0,1,…,n-1},若顶点a与b满足gcd(a-b,n)=1,则顶点a与b不相邻.本文通过偶数阶Unitary Cayley图的邻接矩阵的元素排列规律,应用数学归纳法和数论中的一些常用等式,得到了偶数阶Unitary Cayley图的零化度. The Unitary Cayley graph of order n has vertex set Zn= { 0,1,…,n- 1}. Vertices a,b are adjacent,if gcd( a- b,n) = 1,otherwise,a,b are nonadjacent. The nullity of Unitary Cayley graph with order even is obtained by mathematical induction and some wellknown equations in number theory.
作者 姜琴 王红勇
出处 《南华大学学报(自然科学版)》 2014年第3期73-75,共3页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金资助项目(14JJ6020) 衡阳市科技局基金资助项目(2011KJ4 2013KJ20)
关键词 UNITARY CAYLEY图 零化度 Unitary Cayley graph nullity spectrum
  • 相关文献

参考文献11

  • 1Biggs N. Algebraic graph theory [ M ]. Cambridge : Cam- bridge University Press, 1993.
  • 2Cheng B, Liu B L. On the nullity of graphs[ J ]. Electron- ic Journal of Linear Algebra,2007,16:60-67.
  • 3Boesch F, Tindell R. Circulants and their connectivities [ J ]. Journal of Graph Theory, 1984,8:487-499.
  • 4Dejter I J, Giudici R E. On unitary cayley graphs [ J ]. Journal of Combinatorial Mathematics and Combinatorial Computing, 1995,18 : 121-124.
  • 5Berrizbeitia P, Giudici R E. On cycles in the sequence of unitary cayley graphs [ J ]. Discrete Mathematics, 2004, 282(3 ) :239-243.
  • 6Beaudrap N D. On restricted unitary cayley graphs and symplecfic transformations modulo n [ J ]. Electronic Journal Combinatorics ,2010,17 ( 1 ) :66-69.
  • 7Fuchs E D. Longest induced cycles in circulant graphs[ J ]. Electronic Journal Combinatorics ,2005,12 ( 1 ) : 1-12.
  • 8klotz W, Sander T. Some properties of unitary cayley graphs [ J ]. Electronic Journal Combinatorics, 2007,14 (1) :39-45.
  • 9Sander J W, Sander T. The energy of integral circulant graphs with prime power order [ J ]. Applicable Analysis and Discrete Mathematics ,2011,5( 1 ) :22-36.
  • 10Pullraan N P. Matrix Theory and its applications[M]. New York: Academic Press, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部