期刊文献+

分数阶导数的Du Bois-Reymond引理及其在分数变分问题中的应用(英文)

Du Bois-Reymond's type lemmas of fractional derivatives and its applications in fractional variational problems
下载PDF
导出
摘要 考虑Riemann-Liouville分数导数意义下的分数变分问题.首先,对于这类分数变分计算,证明了与古典Du Bois-Reymond引理相对应的结果.然后,应用该结果建立了分数变分泛函的Euler必要条件.最后,讨论了全局极值问题,得到了一些全局极值存在的充分必要条件. The paper concerns with fractional variational problems in terms of the Riemann-Liouville fractional derivative.First, for such kinds of fractional variational calculus , we prove a counterpart of the Du Bois-Reymond lemma in the classical calculus of variations .Then, this result is applied to establish the Euler necessary conditions on fractional variational functionals .Finally, we discuss the global minimum problems and obtain some sufficient and necessary conditions on the existence of global minimum .
作者 白定勇
出处 《广州大学学报(自然科学版)》 CAS 2014年第4期1-10,共10页 Journal of Guangzhou University:Natural Science Edition
关键词 Riemann-Liouville分数阶导数 Du Bois-Reymond引理 α阶弱局部极值 Euler必要条件 全局极值 fractional variational problems Riemann-Liouville fractional derivative Du Bois-Reymond Lem-ma a-order weak local minimum Euler equation global minimum
  • 相关文献

参考文献17

  • 1AGRAWAL 0 P. Formulation of Euler-Lagrange equations for fractional variational problems [ J ]. J Math Anal Appl, 2002, 272 ( 1 ) : 368-379.
  • 2AGRAWAL 0 P. Fractional variational calculus and the transversality conditions [ J]. J Phys A: Math Gen, 2006, 39 (33) : 10375-10384.
  • 3AGRAWAL O P. Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the caputo deriva- tive[J]. J Vibr Control, 2007, 13(9/10) : 1217-1237.
  • 4AGRAWAL O P. Fractional variational calculus in terms of Riesz fractional derivatives[ J]. J Phys A: Math Theor, 2007, 40(24) : 6287-6303.
  • 5YOUSEFI S A, DEHGHAN M, LOTFI A. Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions [ J ]. Comput Math Appl, 2011, 62 (3) : 987-995.
  • 6ALMEIDA R, TORRES D F M. Calculus of variations with fractional derivatives and fractional integrals[J]. Appl Math Lett, 2009, 22(12) : 1816-1820.
  • 7MALINOWSKA A B, TORRES D F M. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative[ J]. Comput Math Appl, 2010, 59 : 3110-3116.
  • 8ALMEIDA R, TORRES D F M. Necessary and sufficient conditions for the fractional calculus of variations with Caputo de- rivatives[J]. Commun Nonlin Sci Numer Simul, 2011, 16(3) : 1490-1500.
  • 9ALMEIDA R, TORRES D F M. Fractional variational calculus for nondifferentiable functions [ J ]. Comput Math Appl, 2011, 61(10): 3097-3104.
  • 10BALEANU D, MAARABA T, JARAD F. Fractional variational principles with delay[J]. J Phys A. Math Theor, 2008, 41 : 315403-315410.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部