期刊文献+

基于核DCV算法的主动近红外人脸识别方法 被引量:3

Kernel Discriminative Common Vector Method for Active NIR Face Recognition
下载PDF
导出
摘要 针对人脸识别领域存在的受环境光照变化影响大的问题,分析了各种主动成像方法的特点以及人脸皮肤的光谱反射特性,提出了使用近红外LED灯作为主动光源,选用近红外滤光片配合CCD相机完成人脸图像采集,并综合运用可鉴别共同向量方法(DCV)和核投影方法进行人脸特征提取。该特征提取方法同时解决了核投影方法面临的大样本问题和可鉴别共同向量方法面临的样本维数较高问题,减少了计算复杂性,提高了特征提取的效率和准确度。仿真结果表明基于核DCV的主动近红外人脸识别方法有利于消除光照影响、提高识别效率。 Aiming at reducing the influence on face recognition of varying illumination, a new face recognition method is proposed after analyzing the characteristics of various active imaging methods and the spectral reflection characteristic of human skin. The new method uses active near-infrared imaging way to acquire human face images and uses the combination of kernel projection and discriminative common vectors(DCV) to achieve facial feature extraction for recognition. So the problems of large sample size and high dimensions can be solved together, which means it can reduce the computation complexity and improve the efficiency and accuracy of feature extraction. The results of experiments prove the effectiveness of proposed method.
作者 俞红兵 乔亚
机构地区 电子工程学院
出处 《红外技术》 CSCD 北大核心 2014年第10期807-811,共5页 Infrared Technology
基金 中国博士后科学基金项目 编号:2012M521844 电子工程学院博士基金项目 编号:KY09036
关键词 主动近红外 人脸识别 核投影 可鉴别共同向量 active near infrared face recognition kernel projection discrimination common vectors
  • 相关文献

参考文献12

  • 1Sujata G. Bhele, V. H. Mankar. A Review Paper on Face Recognition Techniques[J]. International Journal of Advanced Research in Computer Engineering & Technology, 2012, 1: 339-346.
  • 2R.Rajalakshmi, M.K.Jeyakumar. A novel approach to face recognition with pose and illumination variation using support vector machine as classifier[J]. International Journal of Innovative Technology and Exploring Engineering, 2013, 3:2278-3075.
  • 3Y. Moses, Y. Adini, S. Ullman. Face recognition: The problem of compensating for changes in illumination direction[C]//In European Conf. on Computer Vision, 1994, I: 286-296.
  • 4Chen H F, Belhumeur P N, Jacobs D W. In Search of Illumination Invaxiants[C]//Proc of the IEEE Conference on Computer Vision and Pattern Recognition. 2000, I:254 -261.
  • 5Li W J, Wang C J, Xu D X, et al.. illumination lnvariant Face Recognition Based on Neural Network Ensemble[C]//Proc of the 16th IEEE International Conference on Tools with Artificial Intelligence, 2004: 486-490.
  • 6S. Zhou, G. Aggarwal, R. Chellappa, et al. Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2007: 230-245.
  • 7Moses Y, Ullman S. Limitation of non-model based recognition schemes[C]//Proc, 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, 1992: 820-828.
  • 8H. Cevikalp, M. Wilkes. Face Recognition by Using Discriminative Common Veetors[C]/IProceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 2004, 1: 326-329.
  • 9Finlayson G D, Hordley S D, La C, et al. On the removal of shadows from images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 59-68.
  • 10Zhen Lci, Changtao Zhou, Dong Yi, et al. An improved coupled spectral regression for heterogeneous face recognition[C]//Biometrics (ICB), 2012 5th IAPR International Conference on, 2012: 7-12.

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部