期刊文献+

基于生物质谱的定量蛋白质组学研究进展 被引量:2

Advancements in Bio-Mass Spectrometry Based Quantitative Proteomics
下载PDF
导出
摘要 随着蛋白质组研究和生物质谱技术的发展,大规模的蛋白质组相对定量和绝对定量已经成为了解生命活动进程、疾病发生发展过程以及生物标志物筛选和验证的重要策略,并形成蛋白质组学研究领域的一个重要分支:定量蛋白质组学.综述了近年来定量蛋白质组学的研究进展,并对其中的关键技术进行讨论. With the development of proteomics and biomass spectrometry, large scale quantitative proteomics has become an important aspectof proteomics. Quantitative proteomics plays important roles in deciphering the biological progress, understanding the development of the disease, and discovering as well as verifying biomarkers for the diagnosis and therapy of diseases. In this review, the status of quantitative proteomics has beenaddressed. The principles, advantages and disadvantages, as well as theapplications of various quantitative proteomics strategieswere summarized and discussed.
出处 《分析测试技术与仪器》 CAS 2014年第3期139-147,共9页 Analysis and Testing Technology and Instruments
基金 国家重点基础研究发展计划(2012CB910602) 国家自然科学基金项目(21025519 21335002) 上海高校特聘教授(东方学者跟踪)岗位计划 上海市重点学科发展基金项目(B109)资助
关键词 生物质谱 蛋白质组 相对定量 绝对定量 biomass spectrometry proteomics relative quantification absolute quantification
  • 相关文献

参考文献58

  • 1Tyers M, Mann M. From genomics to proteomics [ J ]. Nature, 2003, 422 : 193-197.
  • 2Zhu H,Pan S,Gu S,et al. Amino acid residue specific stable isotope labeling for quantitative proteomics [ J ].Rapid Commun Mass Spec,2002, 16:2 115-2 123.
  • 3Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics[ J ]. Mol Cell Proteomics, 2002, 1 : 376 - 386.
  • 4Molina H, Yang Y, Ruch T, et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy[J]. J Proteome Res, 2008, 8:48-58.
  • 5Manuel T, Sabrina G, David A, et al. Development of a 5- plex SILAC Methodtuned for the quantitation of tyrosine phosphorylation dynamics [ J ]. Mol Cell Proteomics,2013,12:3 339-3 349.
  • 6Kruger M, Moser M, Ussar S,et al. SILAC mouse for quantitative proteomics uncovers kindlin- 3 as an essential factor for red blood cell function [ J ]. Cell, 2008, 134:353-364.
  • 7Neubert T A, Tempst P. Super-SILAC for tumors and tissues[ J]. Nat Methods,2010, 7:361-362.
  • 8Yao X, Freas A, Ramirez J, et al. Proteolytic 180 labeling for comparative proteomics: model studies with two serotypes of adenovirus[ J]. Anal Chem,2001,73 : 2 836-2 842.
  • 9Liu Z, Cao J, He Y,et al. Tandem 180 stable isotope labeling for quantification of N- glyeoproteome [ J ], J Proteome Res,2010,9:2 227-2 236.
  • 10Brown K J, Fenselau C. Investigation of doxorubicin resistance in MCF-7 breast cancer cells using shot-gun comparative proteomics with proteolytic^18O labeling [J]. J Proteome Res,2004, 3:455-462.

同被引文献81

  • 1李欣,黄昆仑,朱本忠,唐茂芝,罗云波.利用“组学”技术检测转基因作物非期望效应的潜在性[J].农业生物技术学报,2005,13(6):802-807. 被引量:6
  • 2HINCHEE A W, CONNOR-WARD D V, NEWELL C A, et al. Production of transgenic soybean plants using agrobacterium-mediated DNA transfer[J]. Nature Biotechnology, 1988, 6(8): 915-922.
  • 3FAO. The state of the world's land and water resources for food and agriculture (SOLAW) managing systems at risk[R]. Rome: FAO, 2011.
  • 4OECD. An introduction to the food/feed safety consensus documents of the task force. Series on the safety of novel foods and feeds, No 14[R]. Paris: OECD, 2006.
  • 5MARTIN J A, WANG Z. Next-generation transcriptome assembly[J]. Nature Reviews Genetics, 2011, 12(10): 671-682.
  • 6GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
  • 7BRUNNER A M, LI J, DIFAZIO S P, et al. Genetic containment of forest plantations[J]. Tree Genetics & Genomes, 2007, 3(2): 75-100.
  • 8MANETTI C, BIANCHETTI C, BIZZARRI M, et al. NMR-based metabonomic study of transgenic maize[J]. Phytochemistry, 2004, 65(24): 3187-3198.
  • 9OKAZAKI Y, SAITO K. Recent advances of metabolomics in plant biotechnology [J ]. Plant Bioteclanology Reports, 2012, 6 ( 1 ): 1 - 15.
  • 10OIKAWA A, MATSUDA F, KUSANO M, et al. Rice metabolomics[J]. Rice, 2008, 1(1): 63-71.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部