期刊文献+

一种基于卡尔曼滤波的压缩跟踪算法研究

Compressive tracking algorithm based on Kalman filter
下载PDF
导出
摘要 根据道路交通监控视频的特点,采用压缩跟踪(CT)算法进行运动车辆的检测与跟踪。在摄像头变化较大、运动车辆尺度变化和背景变化等情况下,CT算法均具有很强的鲁棒性。但是当车辆被遮挡时,跟踪算法容易失效。为了解决这一问题,提出使用卡尔曼滤波对遮挡的车辆进行轨迹预测。卡尔曼滤波能根据CT算法跟踪目标的轨迹,有效地预测目标遮挡时的轨迹。实验结果表明,本算法不但可以较好地处理跟踪车辆尺寸变化的问题,在车辆丢失或被部分遮挡时,能准确而稳定地跟踪车辆,而且具有很好的实时性,满足了工程应用的需求。 We employ compressive tracking (CT) algorithm to detect and track motion cars based on the characteristics of traffic monitoring video. The algorithm has strong robustness for greater camera change, motion vehicles scale change, and background change. However, the algorithm is easy to fail when a vehicle is sheltered. We therefore present a Kalman filter based modified CT algorithm to predict the motion trail of a sheltered vehicle. Kalman filter can track the trail of a target with CT algorithm, and effectively predict the trail of a sheltered target. Experimental results show that the algorithm can not only better solve the issue of motion vehicles scale change - precisely and stably track a vehicle when it disappears or is partly sheltered -, but also has better real-time performance. It thus satisfies the requirements of engineering application.
出处 《山东科学》 CAS 2014年第5期54-59,共6页 Shandong Science
基金 国家自然科学基金(61305012) 中央高校基本科研业务费专项资金(12CX04064A)
关键词 压缩跟踪算法 实时跟踪 目标检测 卡尔曼滤波 compressive tracking algorithm real-time tracking target detection Kalman filter
  • 相关文献

参考文献17

  • 1AVIDAN S. Support vector tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8): 1064 - 1072.
  • 2BLACK M J, JEPSON A D. EigenTracking: Robust matching and tracking of articulated objects using a view-based representations [ J ]. International Journal of Computer Vision, 1998, 26( 1 ) : 63 - 84.
  • 3GRABNER H,GRABNER M,BISCHOF H. Real-time tracking via online boosting[J]. BMVC06,2006, 1:47 -56. Transactions on.
  • 4BABENKO B,YANG M H, BOLONGIE S. Robust object tracking with online multiple instance learning[ J]. IEEE Pattern Analysis and Machine Intelligence, 2011, 33 (8) : 1619 - 1632.
  • 5BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning[ EB/OL]. [2013 -11 -20 ]. http ://www. docin, com/p - 270052250. html.
  • 6FELZENSZWALB P, McALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2008.
  • 7Piscataway, US : IEEE, 2008 : 1 - 8: FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part - based models[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627 -1645.
  • 8MEI X,LING H. Robust visual tracking and vehicle classification via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259 - 2272.
  • 9ROSS D A, LIM J, LIN R, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008, 77(1/2/3) : 125 - 141.
  • 10LI H, SHEN C, SHI Q. Real-time Visual Tracking using Compressive Sensing[ J ]. 2011 IEEE Conference on Computer Vision and Pattern Recognition ,2011 : 1305 - 1312.

二级参考文献15

  • 1WANG S, LU H CH, YANG F, etal.. Superpix- el tracking [C]. Compute Vision (ICCV), 2011: 1323-1330.
  • 2ORON S, AHARON B H, LEVI D, et al.. Local- ly orderless tracking [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Con- ference, 2012.
  • 3KWON J, LEE K M. Tracking of a non-rigid object via patch-based dynamic appearance modeling and a- daptive basin hopping Monte Carlo sampling [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2009,1208-1215.
  • 4KALAL Z, MATAS J, MIKOLAJCZYK K. On line learning of robust object detectors during unsta hie tracking [C]. Computer Visiotl Workshops ( IC CV Workshops), 2009 : 1417-1424.
  • 5GRABNER H, GRABNER M, BISCHOF H. Real time tracking via on-line boosting [C]. Proceedings of British Machine Vision Conference, 2006, 1: 47-56.
  • 6ADAM A, RIVLIN E, SHIMSHON L. Robust frag- ments-based tracking using the integral histogram [ C ]. Computer Vision and Pattern Recognition,IEEE Computer Society Conference, 2006 : 798- 805.
  • 7NEJHUM S M S, HO J, YANG M H. Visual tracking with histograms and articulating blocks [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2008 : 1-8.
  • 8YANG J CH, YU K, HUANG T. Supervised Translation-Invariant sparse coding [C]. Computer Vision and Pattern Recognition (CVPR), 2010: 3517-3524.
  • 9LI H X, SHEN CH H. Real-time visual tracking using compressive sensing [C]. Computer Vision and Pattern Recognition (CVPR), 2011 : 1305- 1312.
  • 10ZHANG K H, ZHANG L, YANG M H. Real- time compressive tracking [C]. European Confer- ence on Computer Vision, 2012.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部