期刊文献+

5-连通图的可收缩边的分布

Distribution of contractible edges of some 5-connected graphs
下载PDF
导出
摘要 图的可收缩边问题对于研究图的结构和证明图的某些性质有着重要作用。本文给出了5-连通图中某些最长圈可收缩边的分布情况,用树型结构理论进行分类讨论,得到如下结论:不含2-断片的5-连通图的最长圈上至少有三条可收缩边。 Contractible edge issue plays an important role in the research on graph structure and the proof of some graph properties. We present the distribution of the contractible edges in some longest cycles of 5-connected graphs and address their classification with tree structure theory. Our conclusion is that at least three contractible edges exist on some longest cycles of .5-connected graphs.
出处 《山东科学》 CAS 2014年第5期103-105,共3页 Shandong Science
关键词 5-连通 可收缩边 最长圈 5-connected contractible edge the longest cycle
  • 相关文献

参考文献5

  • 1BONDY J A, MURTY U S R. Graph theory with applications [ M ]. London:The Macmillan Press Ltd, 1976.
  • 2TUTTE W T. A theory of 3-connected graphs[J]. Indag Math; 1961,23: 441 -455.
  • 3THOMASSEN C. Planarity and duality of finite and infinite graphs[J]. J Combin Theory Ser B, 1980,29 (2) : 244 -271.
  • 4KRISELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[ J]. Graphs and Combinatorics ,2002,18 (1) :1 -30.
  • 5杨朝霞.某些5-连通图中最长圈上的可收缩边[J].山东大学学报(理学版),2008,43(6):12-14. 被引量:7

二级参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部