期刊文献+

复合材料瓦楞板拉伸特性分析及试验验证

Tensile properties estimation for composite corrugated panel and experimental validation
下载PDF
导出
摘要 复合材料瓦楞结构具有高强度、轻质、耐腐蚀、耐疲劳等特点,近年来在建筑幕墙、屋面系统及高档室内装饰中有广泛应用。本文结合复合材料层合板理论和周期均匀化理论,将复合材料瓦楞板等效为经典的正交各向异性板,提出了高精度的复合材料瓦楞板的拉伸、耦合、弯曲刚度,以及弯曲耦合刚度计算方法。最后,以半圆形和梯形两种波纹形状的复合材料瓦楞板为例,对本文提出的刚度计算方法进行了验证,FEM和试验结果表明,该方法高度高、形式简约、适用性强。 Composite corrugated structures has widely applications in curtain wall, roof system and interior decorations as their high strength,light weight, corrosion resistance and fatigue endurance abilities. Based on the composite laminate and periodic homogenization theories, the high-precision stiffness estimation method, has been presented in this paper for calculating the extension, coupling, bending stiffness and bending-coupling stiffness items. The performance of the approach presented in this paper has been demonstrated by both FEM and experimental validations using round and trapezoidal corrugation shapes of composites corrugated panel. The results indicate that this method with simple explicit expressions has high precisions and strong applicability.
出处 《四川建筑科学研究》 2014年第5期212-216,共5页 Sichuan Building Science
基金 国家973科技项目(2013CB036300) 国家自然科学基金项目(51308422 51308478) 中央高校专项研究资金创新项目(2682013CX41)
关键词 复合材料 瓦楞板 层合板理论 周期均匀化 composite corrugated panel laminate theory periodic homogenization
  • 相关文献

参考文献2

二级参考文献12

  • 1杨庆生.智能复合材料的热力学特性[J].固体力学学报,1996,17(4):339-342. 被引量:8
  • 2冯淼林 吴长春 等.三维编织复合材料本构模拟的均匀化方法.第十一届全国复合材料学术会议论文集[M].中国科学技术大学出版社,2000.352-356.
  • 3Feng Miaolin,Third South National Conferenceon Computational Mechanics,2001年
  • 4冯淼林,第11届全国复合材料学术会议论文集,2000年,352页
  • 5Deshpande V S, Ashby M F, Fleck N A. Foam topology:bending versus stretching dominated architectures. Acta Mater,2001,49 : 1035 - 1040.
  • 6Deshpande VS, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids ,2001,49 : 1747 - 1769.
  • 7Wallach J C,Gibson L J. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures, 2001,38:7181 - 7196.
  • 8Wicks N, Hutchinson J W. Optimal truss plates.Int J Solids Struct, 2001,38:5165 - 5183.
  • 9Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two dimensional composites. Journal of the Mechanics and Physics of Solids,1999,47 : 1509 - 1542.
  • 10Kohn R. Recent Progresses in the Mathematical modeling of Composite Materials. Courrant Institute, New York, 1988:155 - 176.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部