期刊文献+

Banach空间中一类四阶两点边值问题的正解的存在性(英文)

The Existence of Positive Solutions for a Fourth-order Two-point Boundary Value Problem in Banach Spaces
下载PDF
导出
摘要 利用Darbo不动点定理,研究了Banach空间中一类四阶两点边值问题x(4)(t)=f(t,u(t),u″(t)),t∈I,x(0)=x′(1)=x″(0)=x(1)=θ,正解的存在性.并给出了例子用来阐明该文的结果. In this paper,by using the Darbo-fixed-point theorem,the existence of positive solution for the fourth-order two-point boundary value problem x(4)(t)=f(t,u(t),u″(t)),t∈I, x(0)=x′(1)=x″(0)=x(1)=θin Banach spaceE is studied,whereI=[0,1],f∈C[I×E×E,E].θis the zero element ofE.As an applica-tion,one example to demonstrate our results is given.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2014年第4期43-48,共6页 Journal of Qufu Normal University(Natural Science)
关键词 BANACH 空间 正解 不动点 四阶两点边值问题 Banach space positive solution fixed point fourth-order two-point boundary value problem
  • 相关文献

参考文献13

  • 1Ma Ruyun, Zhang Jinhui, Fu Shengmao.The method of lower and upper solutions for fourth-order two-point boundary value problems[J].Journal of mathematiea Analysis and Applieaions, 1997(215):415-422.
  • 2Yao Qingliu, Bai Zhanbing.The existence of positive Solutions to the boundary value problem u ^(4) (t) -λh (t) f (u (t)) = 0 [J].Chinese Annals of Mathematics,1999(20) :575-578.
  • 3Zhang Binggeng,Kong Lingju.The existence of positive solutions to the fourth-order singular boundary value problem[J]. Chinese Annals of Mathematics, 2001 (22) : 397-402.
  • 4Wei Zhongli.The positive solution to the fourth-order singular boundary value problem [J].Acta Mathematic Sinica, 1999 (42) :715-722.
  • 5Guo D,Lakshmikantham V.Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces[J].Math Anal Appl,1988(129):211-222.
  • 6DUBIOS D, PRADE H.Towards fuzzy differential calculus. Part 1: integration of :fuzzy maooing[J].Fuzzy Sets and Sys- tems, 1982 (8) : 81-87.
  • 7DUBIOS D, PRADE H. Towards fuzzy differential calculus. Part 2:integration of fuzzy maooing[J].Fuzzy Sets and Sys- tems, 1982 (8):105-116.
  • 8Guo Dajun.Positive solutions of nonlinear equations and its applications to nonlinear integral equations[J].Adv Math, 1984 (13) :294-310.
  • 9Guo Dajun, Lakshmikantham V, Liu Xinzhi. Nonlinear integral equations in abstract spaces [M]. Dordrecht: Kluwer Aca- demic, 1996.
  • 10Demling K.Ordinary differential equations in banach spaces[M].Berlin:Springer-Verlag, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部