期刊文献+

中温加压下镁基吸附剂CO_2吸附和再生性能研究 被引量:1

CO_2 Adsorption and Regeneration Properties of a Magnesium-Based Sorbent under Moderate Temperature and Pressured Condition
下载PDF
导出
摘要 以一种镁基前驱物和一种矿物黏结剂为原料,采用湿混法经煅烧及水合制备得到镁基吸附剂,考察了吸附温度和吸附压力对其CO2吸附性能的影响,并利用XRD、SEM和BET对其理化性质进行了表征。结果表明:镁基吸附剂经水合后的活性组分为Mg(OH)2,当吸附温度为300℃、吸附压力为2MPa时其CO2穿透吸附量达3.93mmol/g;吸附剂水合过程中生成叶蛇纹石,降低了Mg的利用率,吸附过程中在吸附剂表面生成的块状产物层阻碍了CO2内扩散的进行;在中温加压条件下此吸附剂能够达到稳定的18次吸附-再生循环,适用于整体煤气化联合循环发电(IGCC)系统中CO2的脱除。 A magnesium-based precursor and a binder were used to prepare a magnesium-based sorbent by wet mixing method after the process of calcination and hydration. The effects of temperature and pressure on the adsorption properties of the sorbents were investigated. Physicochemical properties of the sorbents were characterized by XRD, SEM and BET. It was indicated that the active component of the hydrous sorbent was Mg(OH)2, whose breakthrough capacity of CO2 reached 3. 93 mmol/g under the condition of 300 ℃ and 2 MPa. Antigorite formed in the process of hydration reduced the utilization efficiency of Mg. Block product layer formed on the surface of the adsorbent in the adsorption process restricted the internal diffusion of CO2. The sorbent could perform 18 stable cycles of sorption-regeneration under moderate temperature and pressured condition, which was suitable for CO2 capture in IGCC.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期573-578,共6页 Journal of East China University of Science and Technology
基金 SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.项目(SSR 166)
关键词 镁基吸附剂 CO2捕集 穿透吸附量 再生 magnesium-based sorbent CO2 capture breakthrough capacity regeneration
  • 相关文献

参考文献16

  • 1BobDudley.BP2030世界能源展望[R].伦敦:英国BP公司,2012.
  • 2张寰,刘峙嵘.燃烧后CO_2捕集材料研究进展[J].现代化工,2013,33(5):17-20. 被引量:4
  • 3厉向杰,张秋禹,张宝亮,范新龙,雷星锋.固体吸附剂吸附二氧化碳的研究进展[J].现代化工,2012,32(2):24-27. 被引量:8
  • 4曹晏,张建民,王洋,张碧江.高温煤气脱硫技术研究进展[J].煤炭转化,1998,21(1):30-35. 被引量:14
  • 5Siriwardane R V, Stevens R W. Novel regenerable magnesi- um hydroxide sorbents for CO2 capture at warm gas tempera- tures [J]. Industrial and Engineering Chemistry Research, 2009, 48(4): 2135-2141.
  • 6James C Fisher Ⅱ, Ranjani V Siriwardane, Robert W Stevens Jr. Process for CO2 capture from high-pressure and moderate- temperature gas streams [J]. Industrial and EngineeringChemistry Research, 2012, 51(14) : 5273-5281.
  • 7Xiao Gongkui, Ranjeet Singh, Alan Chaffee, et al. Advanced adsorbents based on MgO and K2CO3 for capture of COz at elevated temperatures[J] International Journal of Greenhouse Gas Control, 2011, 5(4) :634-639.
  • 8Yang Xinfang, Zhao Lifeng, Xiao Yunhan. Effect of NaNO3 on MgO-CaCO3 absorbent for CO2 capture at warm tempera- ture[J]. EnergySFuels, 2013, 27..7645-7653.
  • 9Zhang Keling, Li Xiaohong, Duan Yuhua, et al. Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature COz removal [J]. International Greenhouse Gas Control, 2013, 12 .. 351-358.
  • 10Halabi M H, de Croon M H J M, vander Schaaf J, et al. High capacity potassium-promoted hydrotalcite for CO2 cap- ture in H2 production[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4516-4525.

二级参考文献54

共引文献33

同被引文献15

  • 1Xiao G K, Singh R, Chaffee A, et al. Advanced Adsor- bents Based on MgO and K2CO3 for Capture of CO2 at Elevated Temperatures [J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 634-639.
  • 2Bhagiyalakshmi M, Hemalatha P, Ganesh M, et al. A Direct Synthesis of Mesoporous Carbon Supported MgO Sorbent for CO2 Capture [J]. Fuel, 2011, 90(4): 1662 -1667.
  • 3Han K K, Zhou Y, Chun Y, et al. Efficient MgO-Based Mesoporous CO2 Trapper and Its Performance at High Temperature [J]. Journal of Hazardous Materials, 2012, 203-204(4): 341 -347.
  • 4Bian S-W, Baltrusaitis J, Galhotra P, et al. A Template- Free, Thermal Decomposition Method to Synthesize Mesoporous MgO With a Nanocrystalline Framework and Its Application in Carbon Dioxide Adsorption [J]. Journal of Materials Chemistry, 2010, 20(39): 8705 -8710.
  • 5Ding Y D, Song G, Zhu X, et al. Synthesizing MgO With High Specific Surface for Carbon Dioxide Adsorption [J]. RSC Advances, 2015, 5(39): 30929 -30935.
  • 6Bhagiyalakshmi M, Lee J Y, Jang H T. Synthesis of Mesoporous Magnesium Oxide: Its Application to CO2 Chemisorption [J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 51 -56.
  • 7Liu W J, Jiang H, Tian K, et al. Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgC12 Preloaded Waste Biomass for Highly Efficient CO2 Capture [J]. Environ Sci Technol, 2013, 47(16): 9397- 403.
  • 8Song G, Ding Y D, Zhu X, et al. Carbon Dioxide Ad- sorption Characteristics of Synthesized MgO With Var- ious Porous Structures Achieved by Varying Calcination Temperature [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2015, 470:39- 45.
  • 9Park Y C, Jo S H, Ryu C K, et al. Long-Term Operation of Carbon Dioxide Capture System From a Real Coal- Fired Flue Gas Using Dry Regenerable Potassium-Based Sorbents [J]. Energy Proeedia, 2009, 1(1): 1235- 1239.
  • 10Wang L, Yao M, Hu X, et al. Amine-modified Ordered Mesoporous Silica: The Effect of Pore Size on CO2 Cap- ture Performance [J]. Applied Surface Science, 2015, 324: 286-292.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部