期刊文献+

基于概率图模型的音乐推荐方法 被引量:1

Music recommendation method based on the probabilistic graph mode
下载PDF
导出
摘要 提出了一种基于概率图模型的音乐推荐方法。该方法利用歌曲相似度确定歌曲间的关系,从而建立歌曲网络,在此基础上利用主题模型得到的歌曲主题概率分布,建立包含局部属性(主题概率分布)和全局结构(歌曲网络)的概率图模型,转化为因子图后,再利用推理算法对概率图模型进行计算,最终获得歌曲在不同主题下的推荐列表。实验表明,本方法能够获得较好的推荐效果。 This paper proposes a music recommendation method based on probabilistic graphical model.This method utilizes similarity between songs to define the relationship between songs,thereby establishing song network,and utilizes the topic distributions obtained by topic modeling,therefore establishing a probabilistic graphic model utilizing both the local attributes(topic distribution)and the global structure(network information),and then transform the probabilistic model into the factor graph model,the approximate inference algorithm is then be used to infer the result.In the end,the model gives a different list of recommendations under different topic.Experimental results show that this method performs better on topical recommendation and is a beneficial exploration on recommender area.
出处 《电子设计工程》 2014年第19期21-24,共4页 Electronic Design Engineering
基金 江苏省自然科学基金(BK2010520)
关键词 音乐推荐 概率图模型 因子图 推理算法 music recommendation probabilistic graphical model factor graph inference algorithm
  • 相关文献

参考文献7

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 2Daphne, Nir Friedman. Probabilistic graphical models: principles and techniques[M]. MIT press,2009.
  • 3Kschischang F,Member S,Frey B J,et al. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory,2001,47(2):498-519.
  • 4Christopher M, Bishop. Chapter 8 Graphical models. In: Pattern Recognition and Machine Learning[M].Berlin: Springer,2006.
  • 5Jie Tang,Jimeng Sun,Chi Wang,et al. Social influence analysis in large-scale networks[J]. Proceedings of the Fifteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009:807-816.
  • 6Frey B J, Dueck D. Clustering by Passing Messages Between Data Points[J]. Science,2007,315(5814):972-976.
  • 7Turnbull D,et al. Semantic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio, Speech, and Language Processing,2008,16(2):467-476.

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献541

同被引文献23

  • 1姜波,张晓筱,潘伟丰.基于二部图的服务推荐算法研究[J].华中科技大学学报(自然科学版),2013,41(S2):93-99. 被引量:6
  • 2让·梅松纳夫.群体动力学[M].北京:商务印书馆,1997.
  • 3LIFSHITZEM,PITAVEVSKIILP.PhysicalKinetics[M].[S.1.]:世界图书出版公司,1999.
  • 4WEISS J B, BERMER E S, JOHNSON K B, et al. Recom- mendations for the design, implementation and evaluation of so- cial support in online communities, networks, and groups [ J]. Journal of Biomedical Informatics, 2013, 46 (6) : 970-976.
  • 5BENGHOZI P J, et al. The long tail: myth or reality? [J]. International Journal of Arts Management, 2010, 12 (3) : 43- 53.
  • 6FENNER T, LEYENE M. , LO1ZOU G. Predicting the long tail of book sales: unearthing the ower-law exponent [ J ]. Physica A-statistical Mechanics and Its Applications, 2010, 389 (12): 2416-2421.
  • 7SKIERA B, ECKERT J, HINZ O. An analysis of the impor- tance of the long tail in search engine marketing [ J ]. Elec- tronic Commerce Research and Applications, 2010, 9 ( 6 ) : 488-494.
  • 8LI X, CHEN HC. Recommendation as link prediction in bipar- tite graphs: a graph kernel-based machine learning approach [J]. Decision Support Systems, 2013, 54 (2) : 880-890.
  • 9ZHOU T, et al. Effect of initial configuration on network-based recommendation [ J]. Europhysics Letters, 2008, 81 (5) : 15-18.
  • 10ZHAO K, WANG X, YU M, GAO B. User recommendations in reciprocal and bipartite social networks-an online dating case study [ J ]. IEEE Intelligent Systems, 2014, 29 ( 2 ) : 27-35.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部