期刊文献+

一类复蒙日-安培方程Dirichlet问题数值解探讨

Research on Numerical Solution of Dirichlet Problem of Complex Monge-ampere Equation
原文传递
导出
摘要 蒙日-安培方程是高度非线性的偏微分方程,因此它的数值解非常困难.本文对第三类Cartan-Hartogs域上的复蒙日-安培方程Dirichlet问题数值解进行了探讨.首先,把该问题化为一个二阶非线性常微分方程的两点边值问题的数值解.其次,在一些特殊的情况下,得到了该方程的Dirichlet问题解的显表达式,它可以用来检验该问题的数值解. Complex Monge-Ampere equation is a nonlinear equation with high degree, therefore to get its numerical solution is very difficult. This paper studies the numerical solution of Dirichlet problem of complex Monge-Ampere equation on Cartan-Hartogs domain of the third type. Firstly, this problem is reduced to the numberical solution of two-point boundary value problem of a nonlinear second-order ordinary differential equation. Secondly, the solution of the above Dirichlet's problem is given in explicit formula under the special case, this explicit formula can be used to check above numerical solution.
作者 殷慰萍
出处 《应用数学学报》 CSCD 北大核心 2014年第5期786-796,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071171 11171285)资助项目
关键词 复蒙日-安培方程 数值解 DIRICHLET问题 CARTAN-HARTOGS域 Kaehler-Einstein度量 二阶非线性常微分方程的两点边值问题 complex Monge-Ampere equation numerical solution Dirichlet's problemCartan-Hartogs domain Kaehler-Einstein metric two-point boundary balue problems
  • 相关文献

参考文献8

  • 1Cheng S Y, Yau S T. On the existence of a complete Khler metric on nomcompact complex manifolds and the regularity of Fefferman's equation. Comm. Pure App. Math., 1980, 33: 507-??.
  • 2Mok N, Yau S T. Completenes, of the Khler-Einstein metric on bounded domain and the charac- terization of domain of holomorphy by curvature conditions. Proc. Symposia Pure Math., 1983, 39: 41-??.
  • 3Keller H B. Numberical Solution of Two-Point Boundary Value Problems. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
  • 4殷慰萍.第三类超Cartan域的Bergman 核函数[J].数学进展,2000,29(5):425-434. 被引量:29
  • 5王安,殷慰萍,张文娟.第三类超Cartan域的Einstein-Khler度量[J].数学进展,2004,33(2):215-228. 被引量:12
  • 6殷慰萍.华罗庚域研究的综述[J].数学进展,2007,36(2):129-152. 被引量:13
  • 7殷慰萍,赵晓霞,张文娟,华罗庚域的创建与研究,《多复变在中国的研究与发展》(陆启铿主编,殷慰萍执行主编),北京:科学出版社,2009,116—149.
  • 8Feng Xiaobing, Neilan, Michael. Analysis of Galerkin methods for the fully nonlinear Monge-Ampre equation. J. Sci. Comput., 2011, 47(3): 303-327.

二级参考文献29

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部