期刊文献+

κ-强连通竞赛图外弧4泛圈点的研究

Out-arcs 4-pancyclic Vertices in κ-strong Tournaments
原文传递
导出
摘要 2006年,Feng等人证明了每个k-强连通竞赛图至少包含k+1个外弧4泛圈点.2010年,郭巧萍等人证明了每个k-强连通竞赛图至少包含k+2个外弧5泛圈点.在这篇文章中,我们将对k-强连通竞赛图的外弧4泛圈点做进一步的研究. In 2006, Feng et al. gave the result that every L-strong tournament contains at least k + 1 out-arc 4-pancyclic vertices, and Guo Qiaoping et al. proved that every k-strong tournament contains at least k + 2 distinct vertices whose out-arcs are 5-pancyclic in 2010. In this paper, we will make further study on out-arcs 4-pancyclic vertices in k-strong tournaments.
作者 李艳艳
出处 《应用数学学报》 CSCD 北大核心 2014年第5期891-894,共4页 Acta Mathematicae Applicatae Sinica
关键词 竞赛图 强连通 外弧泛圈点 tournament strong connectivity out-arcs pancyclic vertex
  • 相关文献

参考文献6

  • 1Bang-Jensen J, Gutin G. Digraph: Theory, Algorithms and Applications. London: Springer-Verlag, 2000.
  • 2R6dei L. Ein kombinatorischer Satz. Acta Litt. Sci. Szeged, 1934, 7:39-43.
  • 3Camion P. Chemins et circuits hamiltoniens des graphes complets. C.R. Acad. Sci. Paris, 1959 249:2151-2152.
  • 4Feng J, Li S, Li R. An s-strong tournament with has s+l vertices whose out-arcs are 4-pancyclic Discrete Applied Mathematics, 2006 154:2609-2612.
  • 5YEO A. The number of pancyclic arcs in a k-strong tournament. Journal of Graph Theory, 2005 50(3): 212-219.
  • 6Guo Qiaoping, Li Shenia, Guo Yubao, Li Hongwei. Out-arc pancyclicity of vertices in tournaments Discrete Applied Mathematics, 2010, 158:996-1005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部