期刊文献+

一类FitzHugh-Nagumo离散模型的混沌控制

Chao control of discrete FitzHugh-Nagumo system
下载PDF
导出
摘要 首先给出Marotto意义下FitzHugh-Nagumo离散模型存在的混沌现象及其动力学行为,然后利用非线性反馈线性化的轨迹跟踪控制原理为FitzHugh-Nagumo离散模型设计控制器,最后将模型稳定到不动点或周期轨道上,数值仿真结果验证了该方法的有效性. The existence of chaos of the discrete FitzHugh-Nagumo model is given in the sense of Marotto and the dynamical behavior which the model has. The controller of the discrete FitzHugh- Nagumo system is designed by principle of chaos tracking control. Finally, the system is controlled in the positive fixed point or a given periodic orbit, the conclusion is validated by simulation.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第3期1-5,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11201057) 国家自然科学基金数学天元基金资助项目(11226263) 吉林省教育厅"一二五"科技研究项目(吉教科合字[2013]第429号)
关键词 FitzHugh-Nagumo离散模型 混沌控制 轨迹跟踪控制原理 discrete FitzHugh-Nagumo chaos control principle of chaos tracking control
  • 相关文献

参考文献10

  • 1WANG Hu, YU Yongguang. ZHAO Ran, et al. Two-parameter bifurcation in a two-dimensional simplified Hodgkin-Huxley model [J]. Commun Nonlinear Sci Numer Simul, 2013, 18(1): 184-193.
  • 2AQIL M, HONG K S, JEONG M Y. Synchronization of coupled chaotic FitzHugh-Nagumo systems [J]. Com- mun Nonlinear Sci Numer Simul, 2012, 17(4): 1615-1627.
  • 3张莹,李智.基于HH模型的心肌细胞电模型[J].计算机与数字工程,2012,40(4):1-2. 被引量:2
  • 4JING Zhujun, CHANG Yu, GUO Boling. Bifurcation and chaos in discrete FitzHugh-Nagumo system [J]. Chaos, Solitons Fractals, 2004, 21(3):701-720.
  • 5ZHAO Yi, XIE I.ingli, YIU K F C. An improvement on Marotto's theorem and its application to chaotification of switching systems [J]. Chaos, Solitons Fractals, 2009, 39(5):2225-2232.
  • 6FAN Dejun, HONG Ling. Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(7):1873-1886.
  • 7ZHEN Bin, XU Jian. Bautin bifurcation analysis for synchronous solution of a coupled FHN neural system with delay [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(2): 442-458.
  • 8刘玉亮,王江,魏熙乐,邓斌,车艳秋,韩春晓,边洪瑞.主从FitzHugh-Nagumo神经元的鲁棒输出同步控制[J].系统仿真学报,2011,23(10):2200-2205. 被引量:1
  • 9沈月琳,李朕.一类时滞混沌系统的混合控制与同步[J].扬州大学学报(自然科学版),2013,16(4):1-4. 被引量:2
  • 10KhalilHK.非线性系统[M].3版.北京:电子工业出版社,2011.

二级参考文献34

  • 1刘红军,王永霞,余海滨,朱明军.心肌细胞电生理学及其在中药研究方面的进展[J].陕西中医,2008,29(2):249-250. 被引量:4
  • 2徐有秋.人心肌细胞电生理学研究进展[J].中华心律失常学杂志,1998,2(3):237-239. 被引量:1
  • 3G L. Chaos in Neural Systems [K]//The Handbook of Brain Theory and Neural Networks. Cambridge, USA: MIT, 1989:186-189.
  • 4G CM, K P, E AK, S W. Oscillatory Responses in Cat Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global Stimulus Properties [J]. Nature (S0028-0836), 1989, 338(6213): 334-337.
  • 5Steriade M, Mccormick Da, S Tj. Halamocortical Oscillations in the Sleeping and Aroused Brain [J]. Science (S0036-8075), 1993, 262(5134): 679-685.
  • 6Roelfsema Pr, Engel A.k, Konig P, S W. Visuomotor Integration Is Associated with Zero Time-Lag Synchronization among Cortical Areas [J]. Nature (S0028-0836), 1997, 385(6612): 57-61.
  • 7Q Y Wang, Q S Lu, G R Chen, D H Guo. Chaos Synchronization of Coupled Neurons with Gap Junctions [J]. Phys Lett A (S0375-9601), 2006, 356(1): 17-25.
  • 8M Dhamala, V K Jirsa, M Z Ding. Enhancement of Neural Synchrony by Time Delay [J]. Physical Review Letters (S0031-9007), 2004, 92(7): 074104.
  • 9R C Elson, A I Selverston, R Huerta, N F Rulkov, M I Rabinovich, H D I Abarbanel. Synchronous Behavior of Two Coupled Biological Neurons [J]. Physical Review Letters (S0031-9007), 1998, 81(25): 5692-5695.
  • 10O Comejo-Perez, R Femat. Unidirectional Synchronization of Hodgkin-Huxley Neurons [J]. Chaos Soliton Fract (S0960-0779), 2005, 25(1): 43-53.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部