期刊文献+

2013年H7N9型禽流感疫情的数学分析 被引量:9

Mathematical analysis of the H7N9 avian influenza appeared in 2013
下载PDF
导出
摘要 以2013年中华人民共和国国家卫生和计划生育委员会公布的中国大陆春季H7N9禽流感疫情的实际数据为例,根据3月31日至5月10日的累计发病人数,首先利用Logistic增长模型,以SPSS软件拟合,并用Matlab软件绘出拟合曲线,发现其与原始数据基本吻合;然后考虑潜伏期温度的影响,对经典的Logistic增长模型进行改进,再进行数学分析和模拟.结果表明:数值结果与实际数据有很好的一致性,禽流感病毒最活跃时的最适温度为15.0℃. This paper is concerned with the data of H7N9 avian influenza epidemic occurred in the spring of 2013 in China's Mainland, which was issued by National Health and Familay Planning Commission of the People's Republic of China. Based on the infectious cases from March 31 to May 10, Logistic growth model is used to the model, fitting by SPSS and simulating by Matlab show that the curve agrees with the original data. Considering the effect of the temprature in the latent period, the classical Logistic growth model is improved to do mathematical analysis and simulation. Numerical results show very good consistence with the original data and the best-fit temprature of the avi- an influenza is 15.0 ℃.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第3期6-8,18,共4页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省大学生实践创新计划项目(201311117077X) 教育部博士点基金资助项目(20113250110005) 国家自然科学基金资助项目(11371311)
关键词 H7N9型禽流感 LOGISTIC模型 数值模拟 H7N9 avian influenza Logistic model numerical simulation
  • 相关文献

参考文献10

  • 1XIAO Yanni, SUN Xiaodan, TANG Sanyi, et al. Transmission potential of the novel avian influenza A(HTN9) infection in China's Mainland[J]. J Theoret Biol, 2014, 352(3): 1-5.
  • 2FULLER T, HAVERS F, XU Cuiling, et al. Identifying areas with a high risk of human infection with the avi- an influenza A(HTNg) virus in East Asia [J]. J Infect, 2014, 69(2) : 174-181.
  • 3PAN Ya'nan, LOU Jingjing, HAN Xiaopu. Outbreak patterns of the novel avian influenza (H7Ng) [J]. Phys A: Stat Mech Appl, 2014, 401(5):265-270.
  • 4BOUROUIBA L, TESLYA A, WU J. Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains., insights from dynamic modeling[J]. J Theoret Biol, 2011, 271(1): 181-201.
  • 5IWAMI S, TAKEUCHI Y, LIU Xianning. Avian-human influenza epidemic model [J]. Math Biosci, 2007, 207(1) : 1-25.
  • 6KIM K I, LIN Zhigui, ZHANG Lai. Avian-human influenza epidemic model with diffusion [J]. Nonlinear Anal: Real World Appl, 2010, 11(1) : 313-322.
  • 7VAIDYA N K, WANG Fengbin, ZOU Xingfu. Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment [J]. Discrete Contin Dyn Syst: Ser B, 2012, 17(8): 2829-2848.
  • 8王铎,赵晓飞.SARS疫情的实证分析和预测[J].北京大学学报(医学版),2003,35(B05):72-74. 被引量:18
  • 9王建锋.SARS流行预测分析[J].中国工程科学,2003,5(8):23-29. 被引量:15
  • 10黄德生,关鹏,周宝森.Logistic回归模型拟合SARS发病及流行特征[J].中国公共卫生,2003,19(6). 被引量:13

二级参考文献8

  • 1Tsoularis A, Wallace J. Analysis of logistic growth models[J]. Mathematical Biosciences, 2002, 179:21-55.
  • 2McCann T L, Eifert J D, Gennings C, et al. A predictive model with repeated measures analysis of Staphylococcus aureus growth data [ J ]. Food Microbiology, 2003, 20 : 139- 147.
  • 3Narushin V G, Takma C. Sigmoid model for the evaluation of growth and production curves in laying hens[J ]. Biosystems Engineering, 2003, 84 (3) : 343-348.
  • 4Impagliazzo J. Determinstic aspects of mathematical demography[ M ]. Springer-Verlag, Belin, Heidelberg,1985.
  • 5Banks R B. Growth and diffusion phenomena:mathematical frameworks and applications [ M ].Springer-verlag,Berlin, Heidelberg. 1994.19- 27;126- 147.
  • 6Kermack WO, McKendrick AG, A contribution to the mathematical theory of epidemics[J]. Proc Royal Soc (Series A), 1927,115: 700-721
  • 7武虎林,赵守军,王显红.传染病模型[A].见:方积乾,陆盈主编.现代医学统计学[M].北京:人民卫生出版社,2002.430-453
  • 8雷玉洁,梁正东.Logistic分布及其医学应用[J].数理医药学杂志,2002,15(1):72-74. 被引量:5

共引文献39

同被引文献77

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部