期刊文献+

带有p-Laplacian算子的分数阶多点边值问题正解的存在性 被引量:2

Existence of positive solution for fractional multipoint boundary value problem with p-Laplacian operator
下载PDF
导出
摘要 考虑如下分数阶多点边值问题:Δ(φp(Δνν-1x(t)))+f(t+ν,x(t+ν))=0,t∈[0,T-1]N0;Δνν-1x(t)t=0=∑ni=1αiΔνν-1x(t)t=ξi,x(T+ν)=0,根据锥上的不动点理论结合变换技巧给出该方程存在正解的充分性条件. The following fractional multipoint boundary value problem is considered:Δ(φp(Δνν-1x(t)))+f(t+ν,x(t+ν))=0,t∈[0,T-1]N0;Δνν-1x(t)t=0=∑ni=1αiΔνν-1x(t)t=ξi,x(T+ν)=0,byusing the fixed theorem on cone and combining the transformation technique, and the sufficient con- dition for the existence of positive solutions of the equation is given.
作者 张瑜 侯成敏
机构地区 延边大学数学系
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第3期9-13,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11161049)
关键词 分数阶差分方程 多点边值问题 正解存在性 不动点定理 fractional difference equation multipoint boundary value problem existence of positivesolutions fixed theorem
  • 相关文献

参考文献10

  • 1GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonloeal condi- tions [J]. Comput Math Appl, 2011, 61(2): 191-202.
  • 2GOODRICH C S. Continuity of solutions to discrete fractional initial value problems [J]. Comput Math Appl, 2010, 59(11): 3489-3499.
  • 3ATICI F M, SENGUL S. Modeling with fractional difference equations [J]. J Math Anal Appl, 2010, 369(1): 1-9.
  • 4ATICI F M, ELOE P W. Two-point boundary value problems for finite fractional difference equations [J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 5HUANG Zhongmin, HOU Chengmin. Solvability of nonlocal fractional boundary valve problems [J]. Discrete Dyn Nat Soc, 2013, 2013: 1-9.
  • 6XIE Zuoshi, JIN Yuanfeng, HOU Chengmin. Multiple solutions for a fractional difference boundary value prob- lem via variational approach [J]. Abstr Appl Anal, 2012, 2012:1-16.
  • 7慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16. 被引量:5
  • 8HOLM M. The theory of discrete fractional calculus: development and application [D]. Lincoln: University of Nebraska, 2011.
  • 9LANK Q. Multiple positive solutions of semilinear differential equations with singularities [J] J London Math Soc, 2001, 63(3): 690-704.
  • 10MA Dexiang, DU Zengji, GE Weigao. Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator [J]. Comput Math Appl, 2005, 50(5/6) : 729-739.

二级参考文献10

  • 1ATICI F M, ELOE P W. A transform method in discrete fractional calculus [J]. lnt J Differ Eqs, 2007, 2(2) : 165-176.
  • 2ATICI F M, ELOE P W. Initial value problems in discrete fractional calculus [J]. Proc Amer Math Soc, 2009, 137(a) : 981-989.
  • 3ATICI F M, ELOE P W. Two-point boundary value problems for finite fractional difference equations [J]. J Differ Eqs Appl, 2011, 17(4): 445-456.
  • 4GOODRICH C S. Solutions to a discrete right-focal fractional boundary value problem [J]. lnt J Differ Eqs, 2010, 5(2): 195-216.
  • 5CHEUNG Wingsum, REN Jingli, WONG P J Y. Multiple positive solutions for discrete nonlocal boundary value problems [J]. J Math Anal Appl, 2007, 330(2) : 900-915.
  • 6GOODRICH C S. On a fractional boundary value problem with fractional boundary conditions [J]. Appl Math Lett, 2012, 25(8): 1101-1105.
  • 7GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal condi- tions [[J]. Comnut Math At)ol. 2011. 61(2) : 191-202.
  • 8GOODRICH C S. Continuity of solutions to discrete fractional initial value problems [J]. Comput Math Appl, 2010, 59(11): 3489-3499.
  • 9ATIC1 F M, SENGOL S. Modeling with fractional difference equations [J]. J Math Anal Appl, 2010, 369(1) : 1-9.
  • 10毋光先,董琪翔,李刚.Banach空间中一类非局部混合积分微分方程[J].扬州大学学报(自然科学版),2011,14(2):27-29. 被引量:6

共引文献4

同被引文献24

  • 1DU Yihong , GUO Zongming. Liouville type results and eventual flatness of positive solutions for p-Laplacian equations[J]. Adv Differ Equ, 2002, 7(12): 1479-1512.
  • 2MATEROJ. Quasilinear elliptic equations with boundary blow-up[J].J Anal Math, 1996, 69: 229-247.
  • 3DU Yihong , MA Li. Logistic type equations on R" by a squeezing method involving boundary blow-up solutions[J].J London Math Soc, 2001, 64(2): 107-124.
  • 4DU Yihong, GUO Zongming. Boundary blow-up solutions and their applications in quasilinear elliptic equations[J].J Anal Math, 2003, 89: 277-302.
  • 5GUO Zongming. Uniqueness and flat core of positive solutions for quasi linear eigenvalue problems in general smooth domains[J]. Math Nachr . 2002, 243: 43-74.
  • 6GARCIA-MELIANJ, SABINA de LISJ. Stationary profiles of degenerate problems when a parameter is large[J]. Differ Integral Equ, 2000, 13(10/12): 1201-1232.
  • 7PENG Hongyun , RUAN Lizhi , XIANGJianlin. A note on boundary layer of a nonlinear evolution system with damping and diffusions[J].J Math Anal Appl , 2015, 426(2): 1099-1129.
  • 8DU Yihong, GUO Zongming. Uniqueness and layer analysis for boundary blow-up solutions[J].J Math Pures Appl , 2004. 83(6): 739-763.
  • 9PUCCI P. SERRINJ. A note on the strong maximum principle for elliptic differential inequalities[J].J Math Pures Appl , 2000, 79(1): 57-71.
  • 10DANCER E N. On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large[J].J Proc London Math Soc, 1986, 53(3): 429-452.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部