摘要
考虑如下分数阶多点边值问题:Δ(φp(Δνν-1x(t)))+f(t+ν,x(t+ν))=0,t∈[0,T-1]N0;Δνν-1x(t)t=0=∑ni=1αiΔνν-1x(t)t=ξi,x(T+ν)=0,根据锥上的不动点理论结合变换技巧给出该方程存在正解的充分性条件.
The following fractional multipoint boundary value problem is considered:Δ(φp(Δνν-1x(t)))+f(t+ν,x(t+ν))=0,t∈[0,T-1]N0;Δνν-1x(t)t=0=∑ni=1αiΔνν-1x(t)t=ξi,x(T+ν)=0,byusing the fixed theorem on cone and combining the transformation technique, and the sufficient con- dition for the existence of positive solutions of the equation is given.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2014年第3期9-13,共5页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11161049)
关键词
分数阶差分方程
多点边值问题
正解存在性
不动点定理
fractional difference equation
multipoint boundary value problem
existence of positivesolutions
fixed theorem