期刊文献+

基于带限制器的RKDG法的可压缩流数值模拟

Numerical simulation of the compressible fluid problem based on RKDG method with a limiter
下载PDF
导出
摘要 采用带简单加权基本无振荡(WENO)限制器的Runge-Kutta间断有限元(RKDG)方法在笛卡尔网格上进行可压缩流数值模拟,同时结合ST(symmetry technique)方法和FGCM(Forrer’s ghost cell method)模拟计算具有复杂几何外形物体的可压缩流问题.该方法能保持计算格式的高精度且易于实现,可以计算具有复杂拓扑结构的物体绕流问题且对网格质量的要求较低.3个典型数值算例验证了该方法的有效性. In this paper, the Runge-Kutta discontinuous Galerkin (RKDG) method with a simple weighted essentially non-oscillatory (WENO) limiter is applied to simulate the compressible fluid on Cartesian grids. Combined with ST (symmetry technique) and FGCM (Forrer's ghost cell method), the above method is applied to compute the compressible fluid problem with complex geometrical shape object in the computing field. This method can keep high order of accuracy, is easier to implement, calculate flow around the object with complex topology shape and is low requirement for the high quality of the grid. Three classic numerical tests are provided to verify the viability of these methods.
作者 杨磊 朱君
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第3期24-28,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11372005 11002071)
关键词 加权基本无振荡 限制器 Runge-Kutta间断有限元方法 浸入边界方法 weighted essentially non-oscillatory limiter Runge-Kutta discontinuous Galerkin meth-od immersed boundary method
  • 相关文献

参考文献15

  • 1REED W H, HILL T R. Triangular mesh methods for the neutron transport equation [R]. Los Alamos, NM: Los Alamos Scientific Laboratory, 1975: 1-23.
  • 2CHAVENT G, COCKBURN B. The local projection p^0 P^1-discontinuous-Galerkin finite element method tor scalar conservation laws [J]. Math Model Numer Anal, 1989, 23(4) : 565-592.
  • 3COCKBURN B, SHU Chiwang. The Runge-Kutta local projection P^1-discontinuous Galerkin finite element method for scalar conservation laws [J]. Math Model Numer Anal, 1991, 25(3): 337-361.
  • 4SHU Chiwang. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. J Comput Phys, 1988, 77(2): 439-471.
  • 5COCKBURN B, SHU Chiwang. The Runge-Kutta discontinuous Galerkin method for conservation laws V : multidimensional systems [J]. J Comput Phys, 1998, 141(2) : 199-224.
  • 6QIU Jianxian, SHU Chiwang. Runge-Kutta discontinuous Galerkin method using WENO limiters [J]. SIAM J Sci Comput, 2005, 26(3): 907-929.
  • 7ZHU Jun, QIU Jianxian, SHU Chiwang, et al. Runge-Kutta discontinuous Galerkin method using WENO limit- ers II : unstructured meshes [J]. J Comput Phys, 2008, 227(9) : 4330-4353.
  • 8SHI Jing, HU Changqing, SHU Chiwang. A technique of treating negative weights in WENO schemes [J]. J Comput Phys, 2002, 175(1) : 108-127.
  • 9ZHONG Xinghui, SHU Chiwang. A simple weighted essentially nonscillatory limiter for Runge-Kutta discontin- uous Galerkin methods [J]. J Comput Phys, 2013, 232(1): 397-415.
  • 10ZHU Jun, ZHONG Xinghui, SHU Chiwang, et al. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes [J]. J Comput Phys, 2013, 248(1): 200-220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部