期刊文献+

基于信息熵和分块颜色矩的图像检索 被引量:4

Image retrieval based on information entropy and block color moment
下载PDF
导出
摘要 提出一种基于信息熵和分块颜色矩的图像检索方法,采用HSV(hue,saturation,value)颜色空间进行非均匀模糊量化,改进的信息熵描述图像的全局颜色特征.通过对图像的重叠分块、计算各子块的颜色矩来反映图像的局部颜色特征,利用循环队列的数据结构使得固定分块具有旋转性,并采用加权欧氏距离计算图像相似度.实验结果表明,该方法具有较好的检索性能. This paper proposes an image retrieval method based on information entropy and segment color moment. It selects the non-equal fuzzy quantification to quantize HSV color space. And the improved information entropy is used to describe the global color feature of an image. It adopts the thought of overlapping blocks, calculates color moment of each sub-block to reflect the local color feature of an image,and uses the data structure technique of circular queue to make the fixed block rotation-invariant. Euclidean distance with weights is used to calculate the similarity of images. The experimental results show that this method has a high retrieval performance.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2014年第3期50-53,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61301220) 江苏省"六大人才高峰"第七批高层次人才项目(2010-DZXX-149)
关键词 图像检索 信息熵 分块颜色矩 循环队列 image retrieval information entropy block color moment circular queue
  • 相关文献

参考文献11

  • 1蒋琳琼,戴青云.一种改进的基于内容的图像检索系统研究[J].软件导刊,2013,20(1):168-170. 被引量:6
  • 2SU C H, WAHAB M H A, HSIEH T M. Image retrieval based on color and texture features [C]//IEEE 9th International Conference on Fuzzy Systems and Knowledge Discovery. Chongqing, China: IEEE, 2012: 1816- 1819.
  • 3BERENS J, FINLAYSON G D, QIU G. Image indexing using compressed color histograms [J]. lEE Proc Vi- sion Image Signal Process, 2000, 147(4) : 349-355.
  • 4CHEN Xufeng, MENG Xiangfang. Iraage retrieval based on optimal matching with block histogram [C]//2nd International Conference on Information Science and Engineering. Hangzhou: IEEE, 2010: 5135-5138.
  • 5LI Xiaojie, WANG Weilan, YANG Wei. Improved local accumulate histogram-based Thangka Iamge Retrieval [C]//International Conference on Image Analysis and Signal Processing. Zhejiang: IEEE, 2010: 318-321.
  • 6ZACHARY J M. An information theoretic approach to content based image retrieval [D]. Baton Rouge, USA: Louisiana State University, 2000.
  • 7CHEN Zhigang. Using fuzzy theory and information entropy to detect leakage for pipelines [C]//IEEE 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012: 3232-3235.
  • 8岳磊.基于分块颜色矩和灰度共生矩阵的图像检索[J].微计算机信息,2012,28(8):162-164. 被引量:7
  • 9张瑜慧,胡学龙.基于非下采样contourlet变换的纹理图像检索算法[J].扬州大学学报(自然科学版),2013,16(1):46-49. 被引量:2
  • 10孙君顶,周利华.一种改进的基于熵的图像检索算法[J].红外技术,2005,27(1):45-48. 被引量:7

二级参考文献24

  • 1Swain M J, Ballard D H. Color Indexing[J]. Intl J on Computer Vision. 1991, 7(1): 11 -32.
  • 2John Z M. An Information Theoretic Approach to Content Based Image Retrieval[D]. Louisiana State University and Agricultural and Mechanical College, Phd.Thesis, 2000, 45-62.
  • 3Lee, H Y , Lee, H K , Ha, Y H. Spatial color descriptor for image retrieval and video segmentation[J]. IEEE Trans On multimedia. 2003, 5(3):358-367.
  • 4Michael J. Swain,Dana H. Ballard.Color Indexing[J].Intemational Journal of Computer Vision,1991,7(1): 11-32.
  • 5Markus Stricker,Alexander Dimai.Color Indexing with Weak Spatial Constraints [C].IS&T/SPIE Conference on Storage and Re- trieval for Image and Video Databases IV,San Jose,CA,1996,2670: 29--40.
  • 6Haralick R,Shanmugan K,Dinstein I.Texture Features for Image Classification[J].IEEE Transactions on Systems,Man and Cybernet- ics, 1973,3(6):610-621.
  • 7Ch.Kavitha, B.P.Rao, A.Govardhan.Image Retrieval Based On Color and Texture Features of the Image Sub-blocks[J].Imemation- al Journal of Computer applications,2011,15(7):33-37.
  • 8ARIVAZHAGAN S, GANESAN L. Texture classification using wavelet transform [-J]. Pattern Recognit Lett, 2003, 24(9/10) : 1513-1521.
  • 9DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [-J]. IEEE Trans Image Process, 2005, 14(12) : 2091-2106.
  • 10ZHANG Dengsheng, ISLAM M M, LU Guojun, et al. Rotation invariant curvelet features for region based im- age retrieval [J]. Int J Comput Vision, 2012, 98(2): 187-201.

共引文献19

同被引文献24

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部