期刊文献+

基于Netflow的流量分类方法研究 被引量:1

Traffic classification based on netflow
下载PDF
导出
摘要 针对Netflow提供的流量信息有限的问题,在Netflow的基本信息基础上构建更丰富的特征空间,通过机器学方法(决策树、朴素Bayes方法和Bayes网络)研究了Netflow用于流量分类的可行性。实验结果表明,决策树方法在Netflow数据上具有良好的分类效果;同时结合Netflow的广泛性,提出的方法具有良好的实用意义和推广价值。 Due to the limited traffic information provided by Netflow,it is not considered as a suitable data set for traffic classification traditionally.We construct a richer feature space based on Netflow,and use machine learning methods(the decision tree,Navie Bayes and Bayes network)to explore the traffic classification.The experimental results show that the decision tree built on Netflow dataset has better precision than other two methods,and reinforce our suggestion that Netflow is fully appropriate for classification.
作者 钱亚冠
出处 《浙江科技学院学报》 CAS 2014年第5期339-344,共6页 Journal of Zhejiang University of Science and Technology
基金 浙江省网络媒体云处理与分析工程技术中心开放课题(2012E10023-14)
关键词 NETFLOW 机器学习 流量分类 Netflow machine learning traffic classification
  • 相关文献

参考文献16

  • 1Bernaille L, Teixeira R, Salamatian K. Early application identification[C]//Proceedings of the 2006 ACM CoNEXT conference. New York: ACM, 2006 : 6.
  • 2Kim H, Claffy K C, Fomenkov M, et al. Internet traffic classification demystified: myths, caveats, and the best practices[C]//Proceedings of the 2008 ACM CoNEXT conference. New York.. ACM,2008:ll.
  • 3Iliofotou M, Kim H, Faloutsos M, et al. Graph-based P2P traffic classification at the internet backbone[C]. INFOCOM Workshops 2009, IEEE. Riode Janeiro.- IEEE,2009 : 1-6.
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: multilevel traffic classification in the dark[J]. ACM SIGCOMM Computer Communication Review, 2005,35 (4) .. 229-240.
  • 5Valenti S, Rossi D, Meo M, et al. Accurate, fine-grained classification of P2P-TV applications by simply counting packets[M]//Traffic Monitoring and Analysis. Papadopouli M, Owezarski P, Pras A. Berlin: Springer, 2009: 84-92.
  • 6Moore A W, Zuev D, Crogan M L. Discriminators for use in flow-based classification[EB/OL]. (2012-10-09)[2014- 03-10]. http://www, cl. cam. ac. uk/awm22/publications/RR-05-13, pdf.
  • 7Claise B. Ciseo Systems NetFlow Services Export Versiong: RFC 3954 (In{ormational)[EB/OL]. (2004-10-01) [2014-03-10]. http., fftools, iet{. org/html/rfe3954, html.
  • 8Auld T, Moore A W, Gull S F. Bayesian neural networks for internet traffic classification[J]. IEEE Transactions on Neural Networks, 2007,18 (1) .. 223-239.
  • 9Crotti M, Dusi M, Gringoli F, et al. Traffic classification through simple statistical fingerprinting[J]. ACM SIGCOMM Computer Communication Review, 2007,37 ( 1 ) .. 5-16.
  • 10Haffner P, Sen S, Spatscheck O, et al. ACAS: automated construction of application signatures[C]//Proceedings of the 2005 ACM SIGCOMM workshop on mining network data. New York.. ACM,2005..197-202.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部