期刊文献+

某型导弹引信备件需求预测模型研究 被引量:2

Research on Spare Parts Demand Forecasting Model of a Missile Fuze
下载PDF
导出
摘要 准确的备件需求预测在备件库存管理中尤为重要,但是备件间歇性需求的特点以及需求的历史数据不足使得备件需求预测特别困难,在一些部门,导弹备件库存管理水平决定了设备如何使用和维修。为解决上述问题,建立一种新的预测方法,综合评价备件需求预测的自相关与解释变量的关系:通过回归分析确定由解释变量引起的非零需求,判别一个非零需求发生的原因,进而得到修正后的非零需求序列的预测结果,最后通过LTD估计,得到具体的非零需求预测值。通过理论分析以及实例结果均证明,改进方法在预测精度上优于其它方法,为导弹备件预测研究提供一定的参考与借鉴。 Accurate demand forecasting is particularly important in the spare parts inventory management, but the characteristics of the intermittent demand and the lack of historical data make spare parts demand forecasting particu- larly difficult, in some sectors, missile spare parts inventory levels also determine on how to use and maintenance the equipment. Starting from the above three difficulties, a new prediction method is established for comprehensive eval- uation of the relationship between the demand forecast from spare parts associated with the explanatory variables : De- termine the non - zero demand caused by the explanatory variables in the regression analysis, discriminate the cause of a nonzero demand, and then get the corrected forecasting result of the sequence of nonzero demand, get specific nonzero demand forecasting by the final LTD estimate. Through theoretical and example analysis, the result is superi- or to other methods in the prediction accuracy, and this new method can provide a reference for the prediction of mis- sile parts.
出处 《计算机仿真》 CSCD 北大核心 2014年第10期67-71,共5页 Computer Simulation
基金 国家自然科学基金资助项目(60478053)
关键词 备件预测 精度预测 指数平滑法 综合预测法 Spare parts forecasting Accuracy prediction Exponential smoothing method Integratedforecasting method
  • 相关文献

参考文献17

  • 1J D Croston. Forecasting and stock control for intermittent demands[J]. Oper Res Quart,1972,23(3) :289 -303.
  • 2J G De Gooijer and A Vidiella - i - Anguera. Forecasting thresholdcointegrated systems[ J] . Int J Forecast, 2004,20:237 -253.
  • 3A A Ghobbar and C Friend. Evaluation of forecasting methods forintermittent parts demand in the field of aviation : apredictive model[J]. Comput Oper Res’ 2003,30: 2097 -2114.
  • 4M Wang and S S Rao. Estimating reorder points and other manage-ment science applications by Bootstrap procedure [ J ]. Eur JOplRes, 1992,56:332 -342.
  • 5T R Willemain,C N Smart and H F Schwarz. A new approach toforecasting intermittent demand for service parts inventories [ J ].Int J Forecast, 2004,20 : 375 - 387.
  • 6A Syntetos, J Boylan, S Disney. Forecasting for inventory plan-ning :A 50 year review [ J]. Journal of the Operational ResearchSociety, 2009,60(SI): 149-160.
  • 7P Brander, E Leven, A Segerstedt. Lot sizes in a capacity con-strained facility - a simulation Study of stationary stochastic demand[J]. International Journal of Production conomics. 2005. 93 - 94 :375 -386.
  • 8A A Syntetos, J E Boylan. The accuracy of intermittent demand es-timates [ J]. International Journal of Forecasting, 2005,21 (2):303 -314.
  • 9E Bartezzaghi, R Verganti, G Zotteri. A simulation framework forforecasting uncertain lumpy demand [ J ]. International Journal ofProduction Economics,1999 ,59( 1 -3) :499 -510.
  • 10R J Hyndman, A B Koehler. Another look at measures of forecastaccuracy[ J]. International Journal of Forecasting, 2006,22(4):679 -688.

同被引文献29

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部