期刊文献+

银行资产监测中的系统性风险问题仿真 被引量:2

Simulation of Systemic Risk for Monitoring of Bank Asset
下载PDF
导出
摘要 传统的银行资产风险监测仅针对单个银行的资本充足率、拨备覆盖率、不良资产率等指标进行监管。然而由于银行间的互相拆借关系,银行的资产风险不仅和银行自身有关,还与别的银行有关,即银行的系统性风险对银行资产风险有重要的影响。针对银行系统性风险问题,构建具有相关性的银行间资产波动模型,提出仿真算法对银行系统性风险进行计算机仿真,仿真结果得到了不同相关系数条件下的银行发生系统性风险的概率。研究结果表明:当银行系统稳定(银行资产波动率小)时,银行系统性风险会随着资产相关性的上升而上升;当银行系统较为稳定时,系统性风险会随着资产相关性的上升而先下降,然后再上升,即存在一个不为零的相关系数使得系统性风险最小;当银行系统不稳时,系统性风险也会随着资产相关性的上升而先下降,然后上升,但此时银行系统性风险已经很高。因此资产相关性作为衡量系统性风险的指标可以对系统性风险进行有效的监测。 Aiming at the the bank system risk problem, the paper presented a model that incorporates the corre- lation between bank asset volatility. An algorithm of simulation on the bank system risk was proposed in the paper, and then a computer simulation was carried out with the model. The simulation results obtain the probability of bank- ing systemic risk under the condition of different correlated coefficients. The results show that : when the banking sys- tem is stable ( the fluctuation rate of bank assets is small), bank system risk will rise along with the asset correlation ; when the banking system is relatively stable, the systemic risk will decline at first, and then rise, which means that there is not a correlation coefficient of zero makes systemic risk minimum ; when the banking system is instable, the systemic risk will first decrease and then increase, but the bank systemic risk is very high. The asset correlation as a measure of systemic risk index can be more effective for monitoring of systemic risk.
作者 杨骅 范宏
出处 《计算机仿真》 CSCD 北大核心 2014年第10期241-245,共5页 Computer Simulation
基金 国家自然科学基金资助项目((70971021 71371046) 上海市教委基础创新重点项目(12ZS055)
关键词 计算机仿真 系统性风险 资产相关性 风险监测 Computer simulation Systemic risk Bank asset correlation Risk monitoring
  • 相关文献

参考文献14

  • 1M Illing, Y Liu. An index of financial stress for Canada [ M ].Bank of Canada, 2003.
  • 2J A Frankel,A K Rose. Currency crashes in emerging markets:An empirical treatment [ J]. Journal of international Economics,1996,41(3) :351 -366.
  • 3G Kaminsky,S Lizondo,C M Reinhart. Leading indicators of cur-rency crises [ J ] . Staff Papers - International Monetary Fund,1998: 1 -48.
  • 4J Sachs, A Tomell, A Velasco. Financial crises in emerging mar-kets: the lessons from 1995 [ R]. National bureau of economic re-search ,1996.
  • 5A Nag, A Mitra. Neural networks and early warning indicators ofcurrency crisis [ J ]. Reserve Bank of India Occasional Papers,1999,20(2) :183 -222.
  • 6A Abiad. Early warning systems for currency crises: A Markov -switching approach with application to southeast Asia[ J]. Manu-script ,University of Pennsylvania, Philadelphia, 1999.
  • 7N Tarashev, C Borio and K Tsatsaronis. The systemic importanceof nancial institutions[ R]. BIS Quarterly Review, 2009 - 9 :75 -87.
  • 8C Upper, A Worms. Estimating bilateral exposures in the Germaninterbank market : Is there a danger of contagion. [ J]. EuropeanEconomic Review, 2004,48(4) :827 -849.
  • 9J Mtiller. Assessing the Potential for Contagion in the Swiss Inter-bank Market[ R]. Working paper, Swiss National Bank, 2004.
  • 10D W Diamond, P H Dybvig. Bank runs, deposit insurance, andliquidity [J]. The journal of political economy, 1983:401 -419.

二级参考文献15

  • 1廖守亿,戴金海.复杂系统基于Agent的建模与仿真设计模式及软件框架[J].计算机仿真,2005,22(5):254-258. 被引量:12
  • 2杨公平,曾广周,卢朝霞.移动Agent系统中的排队机制研究[J].计算机学报,2005,28(11):1817-1822. 被引量:8
  • 3N Gnanasambandam, et al. Reliable Mas Performance Prediction Using Queueing Modles. Multi - Agent Security and Survivability [ C ]. 2004 IEEE First Symposium on. Volume, Issue, Aug. 2004, 30 - 31 : 55 -64.
  • 4R Tobias and C Hofman. Evaluation of Free Java - libraries for Social - scientific Agent Based Simulation [ J ]. Journal of Artificial Societies and Social Simulation ,2004,7 ( 1 ) : 1 - 33.
  • 5赵剑冬,林健.基于Agent的Repast仿真分析与实现[J].计算机仿真,2007,24(9):265-268. 被引量:14
  • 6S Battiston, et al. Default cascades: When does risk diversification increase stability? [ J 1. Journal of Financial Stability, 2012,8 (3) : 138 -149.
  • 7E Nier, et al. Network models and financial stability[ J]. Journal of Economic Dynamics and Control, 2007,31 (6) :2033 -2060.
  • 8C P Georg. The effect of the interbank network structure on conta- gion and common shocks [ J 1. Journal of Banking & Finance, 2013.
  • 9S Lenzu, G Tedeschi. Systemic risk on different interbank network topologies[ J]. Physica A, 2012,391 (18) :4331 -4341.
  • 10李成杰,杨公平,尹义龙.基于agent的银行排队系统仿真[J].计算机仿真,2008,25(12):277-280. 被引量:11

共引文献11

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部