期刊文献+

弱链对角占优M-矩阵A的‖A^(-1)‖_∞上界估计式

Upper Bounds Estimators of ‖A^(-1)‖_∞ of Weakly Chained Diagonally Dominant M-matrices A
下载PDF
导出
摘要 针对弱链对角占优M-矩阵A,利用逆矩阵元素的估计范围,给出A-1∞新的上界估计式。通过算例分析表明新的上界估计式改进了现有的一些结果。 Aiming at the weakly chained diagonally dominant M-matrix A,the new upper bounds estimators for A-1∞are presented by using the estimation range for the elements of inverse matrix.The example analysis shows,the new upper bounds estimators have improved some existed results.
作者 刘新 杨晓英
出处 《四川理工学院学报(自然科学版)》 CAS 2014年第5期93-95,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅自然科学基金项目(13ZB0393)
关键词 弱链对角占优 M-矩阵 无穷大范数 上界 weakly chained diagonally dominant M-matrix infinity norm upper bound
  • 相关文献

参考文献9

  • 1Shivakumar P N,Williams J J,Ye Q,et al.On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J].SIAM J.Matrix Anal.Appl,1996,17(2):298-312.
  • 2Li Wen.The infinity norm bound for the inverse of nonsingular diagonal dominant matrices[J].Appl.Math.Lett,2008,21 (3):258-263.
  • 3Huang Tingzhu,Zhu Yan.Estimation of ‖A-1 ‖∞ for weakly chained diagonally domiant M-matrices[J].Linear Algebra Appl,2010,432(2/3):670-677.
  • 4潘淑珍,陈神灿.弱链对角占优矩阵‖A^(-1)‖_∞的上界估计[J].福州大学学报(自然科学版),2012,40(3):281-284. 被引量:12
  • 5李艳艳,蒋建新.严格对角占优M-矩阵的逆矩阵的无穷大范数上界改进的估计式[J].四川理工学院学报(自然科学版),2012,25(4):97-100. 被引量:3
  • 6胡家赣.‖B-1A‖∞的估计及其应用[J].计算数学,1982,4(3):272-282.
  • 7Cvetkovic L,Dai P F,Doroslovacki K,et al.Infinity norm bounds for the inverse of Nekrasov matrices[J].Applied Mathematics and Computation,2013,219(10):5020-5024.
  • 8Horn R A,Johnson C R.Topics in Matrix Analysis[M].New York:Cambridge University Press,1991.
  • 9陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.

二级参考文献10

  • 1Shivakumar P N, Williams Joseph J, Ye Qiang, et al. On two - sided bounds related to weakly diagonally dominant M - matrices with application to digital circuit dynamics[J]. SIAM J Matrix Anal Appl, 1996, 17(2) : 289 -312.
  • 2Cheng G H, Huang T Z. An upper bound for IIA-1 II. of strictly diagonally dominant M - matrices[J]. Linear Algebra and Its Applications [ J ]. 2007, 426 : 667 - 673.
  • 3Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[ M]. New York: Academic Press. 1979.
  • 4Li W. On nekrasov matrices [ J ]. Linear Algebra and Its Applications, 1998, 281:87 -96.
  • 5Shivkumar P N, Chew K H. A sufficient condition for nonvanishing of determinants [ J]. Proc Amer Math Soc, 1974, 43 (1) :63 - 66.
  • 6陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 7Shivakumar P N,Chew K H. A sufficient condition for nonvanishing of determinants[J]. Proc Amer. Math. Soc., 1974,43:63 -66.
  • 8Cheng Guoliang, Huang Tingzhu. An upper bound for of strictly diagonally domiinant M-matrices [J]. Linear Algebra Appl. ,2007,426:667-673.
  • 9LI Yaotang,LI Yanyan. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matri- ces [J]. Linear Algebra Appl.,2010,432:536-545.
  • 10李艳艳,李耀堂.严格对角占优M-矩阵的逆矩阵的无穷大范数上界的估计[J].云南民族大学学报(自然科学版),2012,21(1):52-56. 被引量:18

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部