期刊文献+

改进的粒度支持向量机在甲醇合成中的应用 被引量:1

Application of the Improved Granular Support Vector Machine in Methanol Synthesis
下载PDF
导出
摘要 针对甲醇合成过程中的复杂性和非线性等问题,利用共享最近邻(SNN)相似度将训练样本划分成若干个信息粒,然后分别进行支持向量提取,最后将提取出的支持向量融合,建立最终粗甲醇转化率预测模型。试验结果表明,改进的粒度支持向量机(GSVM)可以将"冗余数据"进行删减,获得更"稀疏"的回归模型,精度也高于传统支持向量机的粗甲醇转化率模型,从而能更好地指导甲醇生产。 To counter the problems of complexity and nonlinearity in methanol synthesis process, by using shared nearest neighbor ( SNN )similarity, the training samples are divided into several information granules, then support vector extraction is conducted respectively, finally theprediction model of crude methanol conversion rate is built from these extracted support vectors. The experimental results show that the improvedgranular support vector machine can delete Fredundant data" and to get "sparse" regression model, and offer higher accuracy than traditionalsupport vector machine crude methanol conversion rate model, thus the methanol production can be guided better.
出处 《自动化仪表》 CAS 北大核心 2014年第10期9-12,共4页 Process Automation Instrumentation
基金 国家自然科学基金资助项目(编号:21366017) 内蒙古自然科学基金重大项目(编号:2011ZD08) 内蒙古自治区教育厅高等学校科学研究基金资助项目(编号:NJZY13144) 包头市科技局重大科技发展基金资助项目(编号:2011Z1006)
关键词 支持向量机 共享最近邻(SNN) 粒度支持向量机 粗甲醇转化率 粒度计算 Support vector machine ( SVM ) Shared nearest neighbor ( SNN)Granular support vector machine ( GSVM ) Crude methanolconversion rate Granular computation
  • 相关文献

参考文献9

  • 1Rahnamayan S, Tizhoosh H R, Salamam M A. Opposition-based differential evoloution [ J ]. IEEE Transactions on Evolutionary Computation, 2008,12 ( 1 ) :64-79.
  • 2缪啸华,宋淑群,王建华,张凌波,顾幸生.基于模糊神经网络的甲醇合成塔转化率软测量模型[J].石油化工自动化,2012,48(2):32-35. 被引量:9
  • 3Vapnik V. The nature of statistical learning theory [ M ]. New York: Springer-Verlay Press, 1995 : 156.
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 5Tang Yuchtm,Jin Bo,Sun Yi,et al. Granular support vector machines for medical binary classification problems [ C ]//Computational Intelligence in Bioinformatics and Computational Biology,2004:73-78.
  • 6张鑫 王文剑.一种基于粒度的支持向量机学习策略.计算机科学,2008,35(8):101-103,116.
  • 7Ding Shifei,Qi Bingjun. Research of granular support vector machine[ J ]. Artff Intell Rev,2012,38(5) :1-7.
  • 8Wang Wenjian, Guo Husheng, Jia Yuanfeng, et al. Granular support vector machine based on mixed measure [ J ]. Neuro Computing, 2013,101(5) :116-128.
  • 9Ertoz L, Steinbach M, Kumar V. A new shared nearest neighbor clustering algorithm and its applications [ C ]//In Workshop on Clustering High Dimensional Data and Its Applications, Proceedings of Text Mine' 01, First SIAM intl. Conference on Data Mining, Chicago, IL, USA, 2001.

二级参考文献9

  • 1刘瑞兰,苏宏业,褚健.模糊神经网络的混合学习算法及其软测量建模[J].系统仿真学报,2005,17(12):2878-2881. 被引量:14
  • 2RAHNAMAYAN S,TIZHOOSH H R,SALAMA MMA. Opposition based Differential Evolution[J].IEEE Transactions on Evolutionary Computation,2008,(01):64-79.
  • 3FAN S K,LIANG Y C,ZAHARA E A. Genetic Algorithm and a Particle Swarm Optimizer Hybridized with Nelder-Mead Simplex Seareh[J].Computers & Industrial Engineering,2006,(04):401-425.
  • 4CHELOUAH R,SIARRY P A. Hybrid Method Combining Continuous Tabu Search and Nelder Mead Simples Algorithms for the Global Optimization of Multiminima Funetions[J].European Journal of Operational Research,2005,(03):636-654.
  • 5COYLE D,PRASAD G,MCGINNITY T M. Faster Self-organizing Fuzzy Neural Network Training and a Hyper Parameter Analysis for a Brain-computer Interface[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2009,(06):1458-1470.
  • 6MISHRA R R. Self-organizing Fuzzy Neural Network.an Application Character Recognition[A].2002.2640-2644.
  • 7STORN R,PRICE K. Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,(04):341-359.
  • 8NELDER J A,Meadf R A. Simplex Method for Function Minimization[J].Computer Journal,1965,(04):308-313.
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2280

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部