期刊文献+

基于梯度投影的视频跟踪算法 被引量:2

Video Tracking Algorithm Based on Gradient Projection
下载PDF
导出
摘要 为实现复杂场景内目标的准确捕获与跟踪,结合目标特征,提出基于梯度投影的视频跟踪算法。根据目标先验知识,对视频流开窗并进行梯度投影,获取目标区域的位置信息;通过特征提取和形态学分析提取目标特征参数,实现目标判定与捕获;利用目标质心坐标更新跟踪窗位置信息,实现对目标的跟踪。实验结果表明,该算法降低了运算量,实时性强,实现了对目标的准确、稳定的跟踪,对实验场景中的光照变化和疑似目标的干扰具有很强的鲁棒性。 In order to capture and track the target accurately in complex scene,combined with the target feature,video tracking algorithm which based ongradient projection is put forward.The algorithm based on prior knowledge of object,we open window for the video and conduct gradient projection in the window to obtain the position information of object areas.By feature extraction and morphological analysis of target extracting feature parameters,to determine goals and capture.Using the object centroid coordinates to update the information of tracking window and achieve the target tracking.The results fully prove that the method reduces the amount of computation,gets strong real-time and tracks target accurately and stably,for the scene of experiment illumination change and suspected object interference has a strong robustness.
出处 《吉林大学学报(信息科学版)》 CAS 2014年第5期458-464,共7页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划基金资助项目(20110356) 吉林省自然科学基金资助项目(201215011)
关键词 视频跟踪 梯度投影 特征提取 目标检测 video tracking gradient projection feature extraction target detection
  • 相关文献

参考文献9

  • 1SIMON DENMAN, CLINTON FOOKES, SRIDHA SRIDHARAN. Improved Simultaneous Computation of Motion Detection and Optical Flow for Object Tracking [ J]. Digital Image Computing: Techniques and Applications, 2009, 35 (9) : 175-182.
  • 2徐瑞,王睿,李怡,等.动态场景下基于Bayesian分类光流法的运动目标检测[J].仪器仪表学报,2011,32(12):66-70.
  • 3施家栋,王建中.动态场景中运动目标检测与跟踪[J].北京理工大学学报,2009,29(10):858-860. 被引量:20
  • 4DAN SCHONFELD. Dynamic Proposal Variance and Optimal Particle Allocation in Particle Fihering for Video Tracking [ J ]. Circuits and Systems for Video Technology, IEEE Transactions on, 2008, 18(9) : 1268-1279.
  • 5WANG Junxian, GEORGE BEBIS, RONALD MILLER. Robust Video-Based Surveillance by Integrating Target Detection with Tracking [ C ]//Computer Vision and Pattern Recognition Workshop Conference on Digital Object Identifier. New York, USA: [ s. n. ] , 2006 : 137-144.
  • 6CHEN Ken, ZHANG Meng, BATUR C. Gaussage and Online Parameter Based Video Tracking Mode Transition from KF to PF for Optimal Performance [ C ]//Control and Decision Conference 24th Chinese Digital Object Identifier. Taiyuan, China: Is. n. ], 2012: 1331-1336.
  • 7齐蕴光,安钢,龚正波.基于梯度投影法的电子稳像算法[J].计算机工程,2012,38(6):230-232. 被引量:2
  • 8解梅,俞成浦.基于梯度投影和形态学的指纹图像分割方法[P].中国:200810045690,2008-12-24.
  • 9HUANG SHIH-CHIA. An Advanced Motion Detection Algorithm with Video Quality Analysis for Video Surveillance Systems [ J]. Circuits and Systems for Video Technology, 2011, 21 ( 1 ) : 1-14.

二级参考文献13

  • 1李博,王孝通,杨常青,金良安.电子稳像的灰度投影三点局域自适应搜索算法[J].光电工程,2004,31(9):69-72. 被引量:20
  • 2董立羽,卜彦龙,戴斌.电子稳像技术发展评述[J].信息技术与信息化,2004(6):17-20. 被引量:14
  • 3朱娟娟,郭宝龙,冯宗哲.一种基于灰度投影算法的电子稳像方法[J].光子学报,2005,34(8):1266-1269. 被引量:31
  • 4Collins R, Lipton A, Kanade T, et al. A system for video surveillance and monitoring: VSAM final report, CMU-RI-TR-00-12[R]. Pittsburgh PA: Carnegie Mellon University, 2000.
  • 5Haritaoglu I, Harwood D, Davis L. W4: real-time surveillance of people and their activitiesEJ3. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22(8) : 809 - 830.
  • 6McKenna S, Jabri S, Duric Z, et al. Tracking groups of people[J]. Computer Vision and Image Understanding, 2000,80(1) :42 - 56.
  • 7Wren C, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) : 780 - 785.
  • 8Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[C]// IEEE Workshop on Applications of Computer Vision. Princeton, USA: [s.n.], 1998:8-14.
  • 9Anderson C, Bert P, Vander W. Change detection and tracking using pyramids transformation techniques[C]// Proc of SPIE Conference on Intelligent Robots and Corn puter Vision. Cambridge, MA, USA: [s. n.], 1985, 579:72 - 78.
  • 10Yu T I., Zhang Y J. Motion feature extraction for content-based video sequence retrieval[C]//Proc of SPIE. Washington, USA:[s. n. ], 2001:378 - 388.

共引文献20

同被引文献19

  • 1GMEZ-ROMERO J, PATR1CIO M A, GARCA J, et al. Ontology-Based Context Representation and Reasoning for Object Tracking and Scene Interpretation in Video [ J ]. Expert Systems with Applications, 2011, 38 (6) : 7494-7510.
  • 2WANG J, BEBIS G, MILLER R. Robust Video-Based Surveillance by Integrating Target Detection with Tracking [ C ] // Computer Vision and Pattern Recognition Workshop Conference on Digital Object Identifier. New York, USA : [ s. n. ], 2006 : 137-144.
  • 3SAHANI S K, ADHIKARI G, DAS B K. A Fast Template Matching Algorithm for Aerial Object Tracking [ C ] //2011International Conference on Image Information Processing. Chandipur, India: [ s. n. ], 2011: 1-6.
  • 4WU-CH HU W C. Adaptive Template Block-Based Matching for Object Tracking [ C ] //Eighth International Conference on Intelligent Systems Design and Applications. [ S. 1] : Penghu University, 2008: 61-64.
  • 5FERNANDEZ X. Template Matching of Binary Targets in Grey-Scale Images: A Nonparametric Approach [ J ]. Pattern Recognition, 1997, 30(7) : 1175-1182.
  • 6WANG J, SUN X, LIU P, et al. Sparse Representation of Local Spatial-Temporal Features with Dimensionality Reduction for Motion Recognition [ J ]. Neurocomputing, 2013, 115 (9) : 150-160.
  • 7赵其杰,屠大维,高健,黄志华.基于Kalman滤波的视觉预测目标跟踪及其应用[J].光学精密工程,2008,16(5):937-942. 被引量:26
  • 8陈皓,马彩文,陈岳承,孙小林,唐自力.基于灰度统计的快速模板匹配算法[J].光子学报,2009,38(6):1586-1590. 被引量:38
  • 9颜佳,吴敏渊,陈淑珍,张青林.跟踪窗口自适应的Mean Shift跟踪[J].光学精密工程,2009,17(10):2606-2611. 被引量:16
  • 10王均波,孙幸福,朱磊,林晓志,张健.一种基于灰度投影块匹配算法的电子稳像方法[J].电脑开发与应用,2012,25(9):21-23. 被引量:6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部