期刊文献+

视频中人体行为分析 被引量:6

Analysis of Human Action in Video
下载PDF
导出
摘要 为实现机器视觉代替人眼观察、认知世界以及减少背景和噪声对视频中人体特征提取的影响,以提高识别效果,在研究人体动作表征与识别的基础上,充分考虑局部和全局特征的优缺点,提出了基于局部时空兴趣点和全局累积边缘图像特征相结合的人体行为分析方法.首先,从视频序列中提取局部时空兴趣点和全局累积边缘图像特征;然后用加权字典向量法将两者有机地结合在一起;最后利用最近距离法进行人体行为分析和识别.该方法可有效获得人体时空特征、人体边缘轮廓、人的运动趋势和强烈程度.实验结果表明,该方法快速,相比其他算法识别率大致提高了2%~5%. In order to solve machine vision reduce the effects of background and noise on the video feature extraction,and to improve recognition results.We propose a human action analysis method by combining the local space-time interest points and global accumulated edge image feature based on the study of human action representation and the full consideration of the advantages and disadvantage of the local and global features.First,local space-time points of interest and global accumulated edge image feature are extracted from the video sequences.Then we use the weighted dictionary to combine them together organically,finally we use the minimums distance method for human action analysis and identification.This method can effectively obtain the spatial characteristics of human,human edge contour and the human movement trends and intensity,the experimental show that our method is faster and gains a higher recognition accuracy generally inceased by 2% to 5%.
出处 《吉林大学学报(信息科学版)》 CAS 2014年第5期521-527,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(11071026)
关键词 时空兴趣点 累积边缘图像 行为分析 space-time point of interest accumulated edge image action analysis
  • 相关文献

参考文献14

  • 1BOBICK A F, DAVIS J W. The Recognition If Human Movement Using Temporal Templates [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23 (3) : 257-267.
  • 2EFROS A A, BERG A C, MORI G, et al. Recognition Action at a Distance [ C ]//Proc of the 9th IEEE Int'l Conf on Computer Vision. Washington: IEEE Computer Society, 2003 : 726.
  • 3YILMAZ A, SHAH M. Action Sketch: A Novel Action Representation [ C ]//Proc of the 2005 IEEE Computer Society Conf on Computer Vision and Patter Recognition. Washington: IEEE Computer Society, 2005: 984-989.
  • 4AHMAD M, LEE S. Human Action Recognition Using and CLG-Motion Flow from Multi-View Image Sequences [ J]. PatternRecognition, 2008, 41 (7) : 2237-2252.
  • 5GORELICK L, BLANK M, SHECHTMAN E, et al. Action as Space-Time Shapes [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2247-2253.
  • 6谷军霞,丁晓青,王生进.基于人体行为3D模型的2D行为识别[J].自动化学报,2010,36(1):46-53. 被引量:16
  • 7张德才.视频流中多人体跟踪算法研究[D].长春:吉林大学,2011.
  • 8DOLLAR P, RABAUD V, COTI'RELL G, et al. Behavior Recognition via Sparse Spatio-Teporal Features [ C ]//J Visual Surveillance and Performance Evaluation of Tracking and Surveillange. USA : IEEE, 2005 : 65-72.
  • 9韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):776-784. 被引量:26
  • 10刘长红,陈勇,王明文.杂乱背景和摄像机移动下的时空兴趣点检测[J].中国图象图形学报,2013,18(8):982-989. 被引量:1

二级参考文献46

  • 1张见威,韩国强,沃焱.基于边界距离场互信息的图像配准方法[J].通信学报,2006,27(7):87-93. 被引量:10
  • 2Davis J W, Bobick A F. The representation and recognition of human movement using temporal templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 928-934.
  • 3Wang L, Suter D. Informative shape representations for human action recognition. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1266-1269.
  • 4Mohiuddin A, Lee S W. Human action recognition using shape and CLG-motion flow from multiview image sequences. Pattern Recognition, 2008, 41(7): 2237-2252.
  • 5Weinland D, Boyer E, Ronfard R. Action recognition from arbitrary views using 3D exemplars. In: Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-7.
  • 6Ren H B, Xu G Y. Human action recognition with primitivebased coupled-HMM. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada: IEEE, 2002. 494-498.
  • 7Shen Y P, Ashraf N, Foroosh H. Action recognition based on homography constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 8Yilmaz A, Shah M. Matching actions in presence of camera motion. Computer Vision and Image Understanding, 2006, 104(2-3): 221-231.
  • 9Johansson G. Visual motion perception. Scientific American, 1975, 232(2): 76-88.
  • 10Gu J X, Ding X Q, Wang S J, Wu Y S. Full body trackingbased human action recognition. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.

共引文献45

同被引文献24

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部