期刊文献+

量子粒子群优化智能算法的高精度分子对接方法研究 被引量:2

A high-accuracy molecular docking method with Intelligent Algorithm
原文传递
导出
摘要 分子对接是药物发现与设计的重要方法,采用计算机优化和模式识别方法在三维结构数据库中搜索几何、化学特性与特定药物结合位点相匹配分子的计算机辅助药物筛选是当前分子对接的研究热点,这种问题可以归为参数优化问题。本文提出了一种基于改进的量子粒子群(quantum-behaved particle swarm optimization,QPSO)算法的分子对接方法,用于处理大自由度的分子对接计算,并与基于标准QPSO算法和经典拉马克遗传算法的分子对接方法进行了比较,实验结果表明新方法无论是在对接能量还是对接准确性上,明显优于其它2种方法,尤其是在配体复杂性不断增加的情况下,非常适用于高柔性分子对接问题。 The molecular docking is of great importance method for rational drug design. The computer mode identification and optimization technique are used to search the special molecule in three dimensional small molecular database, the special molecule matches with the active site of the specially designed target relating disease in geometry, physics and chemical characteristics, in this way, the computer screening can be used to drug design. Molecular docking can be formulated as a parameter optimization problem. We present a QLDock based on improved quantum-behaved particle swarm optimization (QPSO) for flexible molecular docking which allows to handle a large number of degrees of freedom. Our hybrid method combines a QPSO with a Solis and Wets method for local optimization of molecular complexes. We compared the performance of our new hybrid method to basic QPSO and lamarckian genetic algorithm (LGA) on 17 protein/ligand complex structures benchmarking test set. The result shows that the novel approach is clearly superior to the other two. The new algorithm features a lower energy and gives substantially better results, especially with increasing complexity of the ligands. Thus, it may be used to dock ligands with many rotatable bonds with high efficiency.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第10期1225-1228,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(60774079) 国家自然科学基金资助项目(61300149)
关键词 分子对接 量子粒子群算法 遗传算法 能量优化 molecular docking quantum-behaved particle swarm optimization genetic algorithm energy optimization
  • 相关文献

参考文献14

  • 1Jain A N. Virtual screening in lead discovery and optimization. Curr Opin Drug Discov Devel, 2004, 7(4):396-403.
  • 2Chen H M, Liu B F, Huang H L, Hwang S F, Ho S Y. SODOCK: swarm optimization for highly flexible protein-ligand docking. J Comput Chem, 2007, 28:612-623.
  • 3Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem, 2003, 46(12):2287-2303.
  • 4Huang S Y, Grinter S Z, Zou X Q. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Plays Chem Chem Phys, 2010, 12: 2899-12908.
  • 5Jones G, WiUett P, Glen R C, Leach A R, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol, 1997, 267(3):727-748.
  • 6Goodsell D S, Olson A J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8(3): 195-202.
  • 7Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S, Olson A J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 2009, 30(16):2785-2791.
  • 8Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem, 2013, 34(1):67-75.
  • 9Chen J L, Tsai C W, Chiang M C, Yang C S. A high performance cloud-based protein-ligand docking prediction algorithm. BioMed Research International, 2013, Article ID 909717, 8.
  • 10Guo L, Yan Z, Zheng X, Hu L, Yang Y, Wang J. A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy. J Mol Model, 2014, 20(7):2251- 2261.

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部