期刊文献+

利用粒子群算法求解管网污染源反向追踪模型 被引量:3

An optimal simulation method for identifying pollution source in water distribution networks based on the particle swarm optimization
下载PDF
导出
摘要 针对供水管网中突发污染事件的污染源识别问题,构建污染源反向追踪的模拟-优化数学模型,利用粒子群优化算法求解污染物的侵入位置、时间及侵入速度信息。分别以监测点处污染物模拟质量浓度与实际质量浓度为数据源,应用模型对试验供水管网进行污染源识别研究,分析管网拓扑结构、粒子群算法中种群规模及惯性权重参数设置对结果的影响。结果表明,当参数设置合理时,基于粒子群优化算法的污染源模拟-优化反向追踪模型具有较高的准确率和计算效率。 The paper is inclined to propose an optimal simulation method based on the particle swarm optimization(PSO) to be applied for identifying the pollution source in the water distribution networks. In the paper, we have also chosen PSO as an optimized tool and the EPANET water distribution system model as a simulator. For the research purpose, we have first of all analyzed the changing situation of the pollutant Cr(VI) concentrations with time and space in the pipe network in accordance with the experiments of Cr(VI) solution intru- sion into the laboratory water distribution network, on which basis we have calibrated and established the hydraulic and water quality mod- els, which should be coincided with the actual experimental scenario in the pipe network. And then, we have managed to set up a simulation-optimization model for identifying the pollution source in the water distribution networks as a calculation program compiled in the Matlab, with the sum of the square difference between the simulated pollutant and the actually measured concentrations at monitoring spots as the objective function and the EPANET toolbox as the embedded simulation engine. Besides, we have also adopted the particle swarm optimization algorithm to collect the information and data of the pollution source spots, the starting time and speed of the pollutant intrusion. Thirdly, based on the Cr (VI) intrusion experiment and the simulation-optimization model, we have been trying to solve the pollution source identification problem by using the simulated pollution concentrations and measured ones respectively as the data resource. The method we have proposed has thus been proved viable. And, finally, by setting the parameters influencing the model and comparing the output results, we have also made a thorough analysis of the influential factors, such as the network topologic structure, the population size and the inertiaweight in the particle swarm optimization program. What is more, the computational accuracy and efficiency of the suggested simulation-optimization method turn out to be high enough if the following conditions can be satisfied: the network structure should be made similar enough to the actual one, few joints are similar downstream to the real contamination sources, and the population size and inertiaweight in the particle swarm optimization should be organized reasonably.
出处 《安全与环境学报》 CAS CSCD 北大核心 2014年第5期265-270,共6页 Journal of Safety and Environment
基金 国家水体污染控制与治理科技重大专项(2009ZX07423-004)
关键词 环境工程学 供水管网 污染源识别 模拟-优化模型 粒子群优化算法 environmental engineering water distribution networks contamination source identification simulation-optimization model particle swarm optimization (PSO)
  • 相关文献

参考文献15

  • 1崔福义.城市供水应对突发性水质污染若干技术问题的思考[J].给水排水,2009,35(8):1-3. 被引量:18
  • 2AI Hengyu(艾f旦雨),LIU Tongwei(刘同威).Statistical review of themajor unexpected water contamination incidents at home in the periodfrom 2000 to 2011 [ j] . 安全与环境学报,2013,13(4): 284-288.
  • 3GUAN Jiabao, ARAL M M,MASLIA M L, et al. Identification of con-taminant source in water distribution systemsusing simulation-optimiza-tionmethod: case study [ J] . Journal of Water Resources Planning andManagement, 2006, 132(4) : 252 - 262.
  • 4信昆仑,盛希夫,陶涛,项宁银.基于负梯度法的供水管网污染源识别[J].同济大学学报(自然科学版),2013,41(1):116-120. 被引量:5
  • 5LIU Li, RANJI R S, MAHINTHAKUMAR G. Contamination source i-dentification in water distribution systems using an adaptive dynamic op-timization procedure[ j] . Journal of Water Resources Planning and Man-agement ,2011, 137(2): 183 -192.
  • 6KENNEDY J. Particle swarm optimization[ C]//EBERHART R. Pro-ceedings of IEEE International Conference on Neural Networks , Perth,Australia, 1995. Piscataway, New Jercey: IEEE Service Center, 1995:1942- 1948.
  • 7SHI Y. A modified particle swarm optimizer [ C J//EBERHART R.Evolutionary Computation Proceedings of IEEE World Congress on Com-putational Intelligence. Anchorage, Alaska State: IEEE, 1998: 69 -73.
  • 8JlZhen(纪震),LIAO HUilian(廖惠连),WU Qinghua(吴青华).Particle swarm optimization and its application (粒子群算法及应用)[M] . Beijing: Science Press, 2009 : 16 - 23.
  • 9SHI Feng(史峰),WANG Hui(王辉),YU Lei(郁磊),et al. 30 casestudies on intelligent algorithms in MATLAB(MATLAB 智能算法 30 个案例分析)[M]. Beijing: Beihang University Press, 2011 : 16 - 24.
  • 10李红卫,王梦琳,吕谋,李红艳.给水管网污染源定位模拟及影响因素分析[J].浙江大学学报(工学版),2011,45(1):81-86. 被引量:4

二级参考文献45

  • 1张土乔,黄亚东,吴小刚.供水管网水质监测点选址风险研究[J].自然灾害学报,2006,15(1):149-154. 被引量:10
  • 2张怀宇,赵洪宾,吴文燕,张鹏.市政给水管网水质监测点的优化选址[J].给水排水,1996,22(10):5-8. 被引量:14
  • 3张土乔,黄亚东,吴小刚.供水管网水质监测点优化选址研究[J].浙江大学学报(工学版),2007,41(1):1-5. 被引量:13
  • 4方海恩,吕谋.供水系统预警监测站的优化布置[J].中国给水排水,2007,23(9):44-47. 被引量:3
  • 5Lee B H, Deininger R A. Optimal locations of monitoring stations in water distribution system[J]. J Environ Eng-ASCE, 1992, 118(1): 4-16.
  • 6Kumar A, Kansal M L, Arora G. Identification of monitoring stations in water distribution system [ J ]. J Environ Eng-ASCE, 1997, 123 (8) : 746-752.
  • 7Al-Zahrani M A, Moied K. Locating optimum water quality monitoring stations in water distribution system[A]. In: Proceedings of the ASCE annual conference on Water Resources Planning and Management. Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges [ C ]. Reston, Va, 2001. 179-186.
  • 8Pool S. Optimal operation and location of chlorine boosters [ D ]. Tucson, Ariz. : University of Arizona, 2002. 135-177.
  • 9Tryby M E, Uber J G. Representative water quality sampling in water distribution systems [ A]. In: Proceedings of the ASCE annual conference on Water Resources Planning and Management. Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges[C]. Reston,Va. 2001.125-131.
  • 10ROSSMAN L A, BOULOS P F. Numerical methods for modeling water quality in distribution systems: a comparison [J]. Water Resource Planning and Management, 1996, 122(2): 137 - 146.

共引文献51

同被引文献32

  • 1郭建青,李彦,王洪胜,马健.确定河流水质参数的抛物方程近似拟和法[J].水利水电科技进展,2005,25(2):11-13. 被引量:14
  • 2李田,郑瑞东,朱军.排水管道检测技术的发展现状[J].中国给水排水,2006,22(12):11-13. 被引量:63
  • 3YEH W G. Review ofparameter-identificationprocedures in groundwater hydrology the inverse problem[J]. Water Resources Research, 1986, 22(2): 95-108.
  • 4BHUYAN S J, KOELLIKER J K, MARZEN L J, et al. An integrated approach for water quality assessment of a Kansas watershed[J]. Environmental Modelling & Software, 2003, 18(5): 473-484.
  • 5XU Y, MA C, HUO S, et al. Performance assessment of water quality monitoring system and identification of pollution source using pattern recognition techniques: a case study of Chaohu Lake, China[J]. Desalination and Water Treatment, 2012, 47(1/2/3): 182-197.
  • 6CHENG W P, JIA Y. Identification of contaminant point source in surface waters based on backward location probability density function method[J]. Advances in Water Resources, 2010, 33(4): 397-410.
  • 7CHEN H-Y, TENG Y-G, WANG J-S, et al. Source apportionment of water pollution in the Jinjiang River (China) using factor analysis with nonnegative constraints and support vector machines[J]. Environmental Forensics, 2012, 13(2): 175-184.
  • 8NEUMAN S P. Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty[J]. Water Resources Research, 1973, 9(4): 1006-1021.
  • 9KOPROWSKI R, WROBEL Z, KLESZCZ A, et al. Mobile sailing robot for automatic estimation of fish density and monitoring water quality[J]. Biomedical Engineering Online, 2013, 12(1): 1-19.
  • 10LU T L, ZHANG G X, HUANG P J, et al. Design of an automatic three-dimensional sampling device for water quality emergency monitoring[J]. Applied Mechanics and Materials, 2013, 316/317: 674-677.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部