期刊文献+

SiO_2-Al_2O_3-CaO-MgO四元矿渣棉体系的表面张力测定与模型预报

Surface tension investigation and model forecasting of SiO_2- Al_2O_3-CaO-MgO quaternary mineral wool slag
原文传递
导出
摘要 表面张力是矿物棉生产的重要参数,直接影响到配料和工艺参数的选择.通过实验测量并建立模型预报系统研究了以高炉渣为主要原料制备矿物棉时熔体的表面张力.首先测量了SiO2(40%-60%)- Al2O3(5%-20%)- CaO(20%-30%)-MgO(5%)四元系的表面张力,其值处于350-500 m·m^-1之间;然后结合文献报道的表面张力数据,利用人工神经网络技术建立了SiO2(35%-60%)-Al2O3(5%-20%)-CaO(20%-45%)-MgO(0-10%)四元渣系的表面张力预报模型.该模型对成分范围内的表面张力预报平均误差为9.32%,预报精度较高,可以预报矿物棉熔体成分范围内的表面张力. Surface tension is one of the major parameters for mineral wool production, and it may influence burdening and processing parameter selection. The surface tension of melts for mineral wool production using blast furnace slag as a major material was systematically investigated by experiment measurements and model forecasting. Firstly, a series of surface tension values of SiO2 (40%- 60%)-Al2O3 (5%-20%)-CaO(20%-30%)-MgO(5%) quaternary systems were measured, and they showed in the range of 350 to 500 m·m^-1 . Then in combination with data from reports in literature, an artificial neural network (ANN) model was constructed to calculate the surface tension of melts in an extension system of SiO2 (35%-60%)-Al2O3 (5%-20%)-CaO(20%-45%)-MgO(0- 10%). The average error of the developed model is 9. 32%, proving a higher accuracy for predicting the surface tension of those melts in the extension system.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2014年第10期1335-1340,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(51372019 51074009 50874013) 国家高技术研究发展计划资助项目(2013AA032003)
关键词 矿物棉 表面张力 神经网络 预报 mineral wool surface tension neural networks forecasting
  • 相关文献

参考文献7

二级参考文献34

  • 1岑永权.钢铁渣处理和应用的发展[J].钢铁,1994,29(5):70-74. 被引量:12
  • 2杨铧,杨文崧.利用工业熔渣及其显热生产节能型建筑材料可能性探讨[J].中国建材,2006(3):78-81. 被引量:7
  • 3[5]Tani Y.New Energy Conservation Technologies[M].Berlin:Springer,1981.
  • 4[6]Kenney W F.Energy Conservation in the Process Industries[M].Orlando:Academic Press,1984.
  • 5[8]Bisio G.Energy Recovery From Molten Slag and Exploitation of Recovered Energy[J].Energy,1997,22:400-550.
  • 6[9]Wirth K E.Heat Transfer in Circulating Fluidized Beds[J].Chemical Engineering Science,1995,50:2137-2151.
  • 7[10]Nagata K,Ohara H,Nakagome Y.The Heat Transfer Performance of a Gas-Solid Sontactor With Regularly Arranged Baffle Plates[J].Powder Technol,1998,99:302-307.
  • 8[11]Toshio M,Jun-ichirof Y,Tomohiro A.Granulation of Molten Slag for Heat Recovery[A].2002 37th Intersociety Energy Conversion Engineering Conference (IECEC)[C].641-646.
  • 9GUO Xiao-yu, JIANG Han-wen. An Experimental Study of the Thermal Conductivity Behaviour of Insulating Materials at High Temperature [J]. Journal of Tongji University, 1987, 15 (1): 71 (in Chinese).
  • 10Zeng X, Wang S Y, Wang H, et al. The Simulation of Thermal Insulation Property of Ceramic Fibers [C] //Trans Tech Publi- cations Ltd. High-Performance Ceramics 2001. Second China International Conference. Kunming: Trans Tech Publications Ltd, 2002: 825.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部