摘要
考虑共振情形下二阶常微分方程周期边值问题{u''=f(t,u), t∈(0,2π), u(0)=u(2π), u'(0)=u'(2π)正解的全局分歧,其中f:[0,2π]×R→R(R=(-∞,+∞))为连续函数.运用Dancer全局分歧定理获得了上述问题至少存在一个正解的若干充分条件,这些充分条件中所涉及的值是最优的.
In this paper, we are concerned with the global bifurcation of positive solutions for the following second order periodic boundary value problem {u″=f(t,u),t∈(0,2π) u(0)=u(2π),u′(0)=u′(2π)wheref:[0,2π]×R→R(R=(-∞,+∞))is continuous. By using Dancer's global bifurcation theorem, we obtain some optimal conditions such that the above problem has at least one positive solution.
出处
《系统科学与数学》
CSCD
北大核心
2014年第8期935-949,共15页
Journal of Systems Science and Mathematical Sciences
关键词
周期边值问题
共振
Dancer全局分歧定理
主特征值
正解.
Periodic boundary value problems, at resonance, Dancer's global bifur-cation theorem, principal eigenvalues, positive solutions.