期刊文献+

共振情形下周期边值问题正解的全局分歧

GLOBAL BIFURCATION OF POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS AT RESONANCE
原文传递
导出
摘要 考虑共振情形下二阶常微分方程周期边值问题{u''=f(t,u), t∈(0,2π), u(0)=u(2π), u'(0)=u'(2π)正解的全局分歧,其中f:[0,2π]×R→R(R=(-∞,+∞))为连续函数.运用Dancer全局分歧定理获得了上述问题至少存在一个正解的若干充分条件,这些充分条件中所涉及的值是最优的. In this paper, we are concerned with the global bifurcation of positive solutions for the following second order periodic boundary value problem {u″=f(t,u),t∈(0,2π) u(0)=u(2π),u′(0)=u′(2π)wheref:[0,2π]×R→R(R=(-∞,+∞))is continuous. By using Dancer's global bifurcation theorem, we obtain some optimal conditions such that the above problem has at least one positive solution.
作者 闫东明
出处 《系统科学与数学》 CSCD 北大核心 2014年第8期935-949,共15页 Journal of Systems Science and Mathematical Sciences
关键词 周期边值问题 共振 Dancer全局分歧定理 主特征值 正解. Periodic boundary value problems, at resonance, Dancer's global bifur-cation theorem, principal eigenvalues, positive solutions.
  • 相关文献

参考文献4

二级参考文献28

  • 1Cremins C T. A fixed-point index and existence theorems for semilinear equations in cones. Non- linear Anal., 2001, 46: 789-806.
  • 2Gaines R E and Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin, 1977.
  • 3Mawhin J L. Topological Degree Methods in Nonlinear Boundary Value Problems. Berlin, 1979.
  • 4Pino M A, Manasevich R F, and Montero A. T-periodic solutions for some second-order differential equations with singularities. Proc. Roy. Soc. Edinburgh Sect., 1992, A120: 231-243.
  • 5Pino M A and Manasevich R F. Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J. Diff. Eqns., 1993, 103: 260-277.
  • 6Fonda A, Manasevich R F, and Zanolin F. Subharmonic solutions for some second order differential equations with singularities. SIAM J. Math., 1993, 24: 1294-1311.
  • 7Cabada A. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl., 1994, 185: 302-320.
  • 8Jiang D. On the existence of positive solutions to second order periodic BVPs. Acta Mathematica Sinica, English Series, 1998, 18(1): 31-35.
  • 9Rachunkov'a I, Tvrd'y M, and Vrkoc I. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. Diff. Eqns., 2001, 176: 445-469.
  • 10Jiang D, Chu J, O'Regan D, and Agarwal R P. Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J. Math. Anal. Appl., 2003, 286: 563-576.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部