期刊文献+

基于Bootstrap方法对简单随机序问题的多总体检验 被引量:1

MULTI-SAMPLE TESTING BASED ON BOOTSTRAP METHOD FOR SIMPLE STOCHASTIC ORDERING
原文传递
导出
摘要 简单随机序是在概率分布意义下比较随机变量的大小,被用于许多领域.两总体简单随机序的检验问题已经有了很多的研究成果,但对多总体情况下简单随机序检验问题的研究却很少.文章考虑多总体情况下简单随机序的检验问题,利用分布函数的保序回归估计构造出检验统计量,给出了检验统计量在原假设下的渐近分布;同时,利用Bootstrap方法给出了计算临界值和p值的方法,并通过Monte Carlo模拟来说明文章所提出方法的可实现性和优良表现. Stochastic ordering, by which random variables are compared according to their probability distributions, has been widely employed in practice. Testing against simple stochastic ordering of two distributions has been studied extensively, but there are few works for the case of k 〉 2 distributions. In this article, we consider this case, and construct a test statistic with the isotonic regression estimators of the distribution functions. The null asymptotic distribution of the test statistic is presented, and a procedure to calculate the critical value or p-value based on bootstrapping is given. Finally, simulation results are presented to illustrate the proposed test method.
出处 《系统科学与数学》 CSCD 北大核心 2014年第8期950-959,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11271039) 潍坊市科技发展计划基金(201301019) 潍坊学院青年基金(2011Z24)资助项目
关键词 简单随机序 保序回归估计 假设检验 Bootstrap方法. Simple stochastic ordering, isotonic regression estimation, hypothesistesting, bootstrap method.
  • 相关文献

参考文献1

二级参考文献33

  • 1P. Nuesch, On the problem of testing location in multivariate populations for restricted alternatives, Ann. Math. Stat., 1966, 37: 113-119.
  • 2M. D. Perlman, One-sided testing problems in multivariate analysis, Ann. Math. Stat., 1969, 40: 549-567.
  • 3B. L. S. Prakasa Rao, Asymptotic Theory of Statistical Inference, Wiley, New York, 1987.
  • 4Y. Feng and J. Wang, Likelilood ratio test against simple stochastic ordering among several multi- nomial populations, Comm. Star. Theory Methods, 2008, 37: 81-96.
  • 5P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  • 6G. A. Mack and D. A. Wolfe, K-Sample rank tests for umbrella alternatives, J. Amer. Stat. Assoc., 1981, 76: 175-181.
  • 7Y. Feng, A test of conditional independence against a tree order alternative for stratified data, Utilitas Mathematica, 2011, 84: 225-244.
  • 8P. Pesarin, Multivariate Permatation Test with Application to Biostatistic, Wiley, Chichester, 2001.
  • 9F. Wilcoxon, Individual comparisons by ranking method, Biometrics, 1945, 1: 80-83.
  • 10E. Brunner and u. Munzel, ;the nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation, Biota, J., 2000, 42: 17-25.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部