期刊文献+

基于标志点等距映射的高光谱图像端元提取算法

A method of endmember extraction in hyperspectral image based on landmark isometric mapping
下载PDF
导出
摘要 针对Isomap-NFINDR端元提取算法复杂度高、占用内存多、效率低的缺点,提出一种基于标志点选择Isomap的快速端元提取算法。该方法采用最大最小距离法来选取初始的K个聚类中心点,并采用光谱夹角距离SAD代替欧式距离来进行聚类分割;根据图像的空间特性,从去除聚类的边界点后剩余点间隔抽取距离聚类中心距离最小的N个点作为标志点。真实高光谱图像实验结果表明,提出的算法精度接近原始的基于Isomap-NFINDR算法,而效率提高了将近60倍。 A fast endmember extraction method based on landmark point selection is presented to overcome the high complexity and memory usage of the classical Isomap-NFINDR algorithm.The proposed method uses the maximin distance method to initial the kcluster centers,and carries out clustering segmentation using spectral angle instead of Euclidean distance.According to the spatial characteristics of the image,Nlandmark points which are near to cluster center are selected from the remaining points after removing the boundary points.Experiments with real images reveal that the algorithm proposed has the similar accuracy with the original algorithm and its operational efficiency is improved by 60 times.
出处 《光学技术》 CAS CSCD 北大核心 2014年第5期402-405,共4页 Optical Technique
基金 国家自然科学基金资助项目(61340018) 教育部实验室基金资助项目(2014OEIOF01)
关键词 高光谱图像 端元提取 标志点选择 等距映射 聚类分割 hyperspectral image endmember extraction landmark selection isometric mapping clustering-based image segmentation
  • 相关文献

参考文献14

  • 1Boardman J W, Kruse F A, Green R O. Mapping target signa tures via partial unmixing of AVIRIS data [C]//Fifth JPI. Air- borne Earth Science Workshop, 1995(23) : 23-26.
  • 2Nascimento J M P, Dias J M B. Vertex component analysis:a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoeienees and Remote Sensing, 2005, 43(4): 898- 910.
  • 3Winter M E. N-Findr. An algorithm for fast autonomous spec tral end-member determination in hyperspectral data[C]// In Proc SPIE Imaging Spectrometry V, 1999:266-275.
  • 4Plaza A, Martinez P, Perez R, et al. Spatial/spectral endmem ber extraction by multidimensional morphological operations [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2025-2041.
  • 5Rogge D M, Rivard B, Zh,qng J, el al. Integration of spatial-slietral information for the improved extraction of endmembers[J]. Remote Sensing of Environment, 2007, 110(3) : 287-303.
  • 6Bachmann C M, Ainsworth T L, Fusina R A. Exploiting mani- fold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscienee and Remote Sensing,2005, 43(3): 441-454.
  • 7Kim W. Manifold learning for robust classification of hyperspee- tral data[D]. Purdue University, 2011.
  • 8Heylen R, Burazerovic D, Scheunders P. Non-linear spectral unmix- ing by geodesic simplex volume maximization[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 534- 542.
  • 9唐晓燕,高昆,倪国强,朱振宇,程颢波.基于流形学习和空间信息的改进N-FINDR端元提取算法[J].光谱学与光谱分析,2013,33(9):2519-2524. 被引量:8
  • 10Silva V D, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction [C] // Advances in Neural Information Processing Systems, 2002:705 -712.

二级参考文献15

  • 1Keshava N, Mustard J F. IEEE Signal Processing Magazine, 2002, 19(1): 44.
  • 2Bioucas-Dias J M, Plaza A, Dobigeon N, et al. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012, 5(2): 354.
  • 3Halimi A, Altmann Y, Dobigeon N, et al. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4153.
  • 4Karathanassi V, Sykas D, Topouzelis K N. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 839.
  • 5Licciardi G A, Frate F D. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4163.
  • 6Bachmann C M, Ainsworth T L, Fusina R A. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441.
  • 7Chen Y, Crawford M M, Ghosh J. International Geoscience and Remote Sensing Symposium,2005, 6: 4311.
  • 8Heylen R, Burazerovic D, Scheunders P. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 534.
  • 9WANG Jing(王 靖). Research on Manifold Learning: Theories and Approaches(流形学习的理论与方法研究). Zhejiang University(浙江大学), 2006.
  • 10Zhang Z, Wang J, Zha H. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 253.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部