期刊文献+

基于融合邻域寻优与θ-PSO算法的矩阵特征值求解

Solving matrix eigenvalues based on combining neighborhood optimization with θ-PSO algorithm
下载PDF
导出
摘要 提出一种融合邻域寻优与θ-PSO算法的矩阵特征值求解新方法,将矩阵特征值的求解问题转化为最优化问题。与需要多次运行程序分别求解不同范围的特征值算法相比,该方法可以一次性求出矩阵的全部特征根。仿真实验表明,该算法编程实现方便,对于不同类型的矩阵均可以应用,求解精度高,收敛速度快,大概在10~15代左右就可以收敛,完全可以满足工程实践运算中对精度和速度的要求。 Combined neighborhood optimization with θ-PSO algorithm, a new method of solving matrix eigenvalues is presented. The method transfers the problem of solving matrix eigenvalues into the optimization problem. Compared to the other algorithms needing to run for many times, this method can solve all the eigenvalues at one time. The simulation results illustrate the accuracy and the convergence speed of the algorithm is higher, which can converge within about ten to fifteen generations. The algorithm is implemented conveniently, at the same time, it can obtain any matrix eigenvalues.The method can satisfy the accuracy and speed demand completely suitable for application in engineering.
出处 《计算机工程与应用》 CSCD 2014年第19期32-36,共5页 Computer Engineering and Applications
基金 国家自然科学基金重点项目(No.60835004) 湖南省自然科学基金(No.09JJ3117 No.14JJ3107 No.14JJ3108) 江苏省自然科学基金(No.BK2009727) 教育部重点项目(No.211118) 湖南省科技计划项目(No.2013TZ2017 No.2013FJ3156 No.2013GK3090 No.B11125) 湖南科技大学研究生创新基金(No.S130022)
关键词 θ-PSO算法 特征值 邻域寻优 矩阵 θ-Particle Swarm Optimization(θ-PSO)algorithm eigenvalue neighborhood optimization matrix
  • 相关文献

参考文献8

二级参考文献70

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部