期刊文献+

稀疏表示亲近支持向量机

Sparse representation proximal support vector machine
下载PDF
导出
摘要 通过广义特征值分类的局部信息亲近支持向量机(LIPSVM)将数据点分类到由广义特征值产生的两个不平行平面中最相近者,研究发现LIPSVM方法性能对模型参数具有较强的敏感性,对此,基于稀疏表示技术,提出一种鲁棒的稀疏表示亲近支持向量机(SPSVM),通过挖掘数据点间的有判别的稀疏表示信息,SPSVM除了保持LIPSVM所具备的运算时间快和分类精度高的优势外,还具备噪声学习环境下的鲁棒性(即对噪声或离群点数据具有自然的判别力),且避免了LIPSVM中模型参数选择问题。人工和基准数据集实验结果证实SPSVM具有相较于现有相关方法更优或可比较的学习性能。 As a Generalized Eigen-value based Local Information Proximal SVM(LIPSVM)aims at assigning data points to the closer of two nonparallel planes which are generated by their corresponding generalized eigen-value problems in LIPSVM. LIPSVM owns superiorities in both computation time and test correctness. Existing researches show that the performance of LIPSVM is sensitive to the parameters of model. To address this issue in LIPSVM, following the geometric intuition of LIPSVM, a robust classification method called sparse representation Proximal Support Vector Machine(PSVM)based on sparse representation technology is proposed. By exploring the discriminative sparse representation information among the training points, SPSVM not only keeps aforementioned characteristics of LIPSVM, but also has its additional advantages, e.g., robustness to noise data or outliers and avoiding the model parameters selection problem in LIPSVM.Experimental results on the artificial and benchmark datasets demonstrate the comparable learning performance of SPSVM with respect to several exiting methods.
出处 《计算机工程与应用》 CSCD 2014年第19期107-112,142,共7页 Computer Engineering and Applications
基金 教育部人文社会科学研究规划基金(No.13YJAZH084) 浙江省自然科学基金(No.LY13F020011)
关键词 稀疏表示 亲近分类 流形学习 鲁棒性 sparse representation proximal classification manifold learning robustness
  • 相关文献

参考文献16

  • 1Burges C J C.A tutorial on support vector machine for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):1-47.
  • 2Fung G,Mangasarian O L.Proximal support vector machine classifiers[C]//Proc Knowledge Discovery and Data Mining(KDD),2001:77-86.
  • 3Mangasarian O L,Wild E W.Multisurface proximal support vector machine classification via Generalized eigenvalues[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(PAMI),2006,28(1):69-74.
  • 4Yang Xubing,Chen Songcan,Chen Bin,et al.Proximal support vector machine using local information[J].Neurocomputing,2009,73(1/3):357-365.
  • 5Wu Y,Ianakiev K,Govindaraju V.Improved k-nearest neighbor classification[J].Pattern Recognition,2002,35:2311-2318.
  • 6Li H,Jiang T,Zhang K.Efficient and robust feature extraction by maximum margin criterion[C]//Proc of Conf Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2004:97-104.
  • 7Wright J,Yang A,Sastry S,et al.Robust face recognition via sparse representation[J].IEEE Trans on Pattern Anal Mach Intell,2009,31(2):210-227.
  • 8Zheng M,Bu J,Chen C,et al.Graph regularized sparse coding for image representation[J].IEEE Trans on Image Processing,2011,20(5):1327-1336.
  • 9Scholkopf B,Smola A,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10:1299-1319.
  • 10徐立祥,李旭,吕皖丽,罗斌.组合核支持向量机的模式分析新方法[J].计算机工程与应用,2013,49(24):112-115. 被引量:3

二级参考文献20

  • 1李映,张艳宁,赵荣椿.核学习机研究[J].计算机工程与应用,2004,40(17):4-6. 被引量:4
  • 2宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 3UCI Repository of machine learning databases[EB/OL].http://ar- chive.ics.uci.edu/ml/datasets.html.
  • 4Vapnik V N.The nature of statistical learning theory[M].2nd ed.New York: Springer-Verlag, 2000 : 156-287.
  • 5Shahlaei M, Fassihi A, Saghaiea L.Application of PC-ANN and PC-LS-SVM in QSAR of CCR1 antagonist compounds: a comparative study[J].European Journal of Medicinal Chemistry, 2010,45(4) : 1572-1582.
  • 6Luss R, Aspremont A.Support vector machine classification with indefinite kernels[J].Mathematical Programming Compu- tation, 2009,1 (2/3) : 97-118.
  • 7Diosan L, Rogozan A, Pecuchet J.Improving classification per- formance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters[J].Applied Intelligence, 2012,36(2) : 280-294.
  • 8Ibrikci T,Ustun D,Kaya I E.Diagnosis of several diseases by using combined kernels with Support Vector Machine[J]. Journal of Medical Systems,2012,36(3) : 1831-1840.
  • 9Nguyen H N,Ohn S Y,Park J,et al.Combined kernel func- tion approach in SVM for diagnosis of cancer[C]//Lecture Notes in Computer Science:Advances in Natural Computa- tion, 2005,36 : 1017-1026.
  • 10Dioian L, Rogozan A, P6cuchet J EEvolutionary optimisation of kernel and hyper-parameters for SVM[C]//Modelling, Com- putation and Optimization in Information System and Man- agement Science, 2008 : 107-116.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部