期刊文献+

引入视觉注意机制可变分辨率的遥感图像压缩 被引量:1

Variable resolution remote sensing image compression based on visual attention mechanism
下载PDF
导出
摘要 图像压缩是遥感图像处理的重要研究领域,现有的压缩方法要么丢失重要的细节信息,无法满足实际的应用需要,要么压缩率过低,难以达到实时处理的要求。将视觉注意机制引入到遥感图像压缩中,对不同的显著性区域采用不同的压缩率,这样不仅可以对整个遥感图像达到一个高的压缩率,而且还可以保持重要区域的高分辨率,实现了可变分辨率的图像压缩。实验结果表明在前几个显著性区域中,该方法得到的图像压缩性能指标优于传统压缩方法得到的性能指标。 Image compression is one of important research fields in remote sensing image processing. Existing compression methods either miss important details or adopt low compression rate, which can not meet the actual needs of the application and it is difficult to achieve real-time processing requirements. This paper proposes a remote sensing image compression method based on visual attention mechanism. Various compression ratios are adopted according to the different saliency regions. By this method, it not only achieves high compression ratios for entire image, but also keeps high resolution for important regions. Experimental results indicate that in first few saliency regions, the image compression performance indicators of the method are better than that of conventional methods.
出处 《计算机工程与应用》 CSCD 2014年第20期5-9,共5页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金(No.CUG110818 No.CUGL130223) 国家自然科学基金(No.61302137) 湖北省自然科学基金(No.2013CFB403)
关键词 视觉注意 遥感图像 压缩编码 可变分辨率 visual attention remote sensing image compression encoding variable resolution
  • 相关文献

参考文献14

  • 1Dutra A,Pearlman W,Silva E.Successive approximation wavelet coding of AVTRIS hyperspectral images[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):370-385.
  • 2Huang J,Cheng G,Liu Z,et al.Synthetic aperture radar image compression using tree-structured edge-directed orthogonal wavelet packet transform[J].International Journal of Electronics and Communications,2012,66:195-203.
  • 3Garcia-Vilchez F,Serra-Sagrista J.Extending the CCSDS recommendation for image data compression for remote sensing scenarios[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(10):3431-3445.
  • 4Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 5Wei L,Sang N,Wang Y.A biologically inspired objectbased visual attention model[J].Artificial Intelligence Review,2010,34(2):109-119.
  • 6Wei L,Sang N,Wang Y,et al.A dynamic saliency attention model based on local complexity[J].Digital Signal Processing,2012,22(5):760-767.
  • 7Itti L.Automatic foveation for video compression using a neurobiological model of visual attention[J].IEEE Transactions on Image Process,2004,13(10):1304-1318.
  • 8Kartik S,Ratan K,Amitabha C.Image compression based on block truncation coding using clifford algebra[J].Procedia Technology,2013,10:699-706.
  • 9Yang L,He X,Zhang G,et al.A low complexity blockbased adaptive lossless image compression[J].Optik,2013,124:6545-6552.
  • 10Peyre G.A review of adaptive image representations[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(5):896-911.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部