期刊文献+

基于改进半监督SVR算法的忙时话务量预测

Busy traffic forecasting based on improved semi supervised SVR algorithm
下载PDF
导出
摘要 为了提高运营商节假日忙时话务量的预测精度,通过分析各节假日忙时话务量数据的特点,提出基于改进半监督支持向量机预测算法。该方法采用基于图形拉普拉斯算子的半监督学习算法来变形训练支持向量回归机的核矩阵。针对图形拉普拉斯算子计算量较大的问题,采用Nystrom算法对其进行优化。仿真结果表明,提出的算法有较好的泛化能力和较高的预测精度。 In order to improve the operator holidays busy traffic prediction accuracy, through analyzing the holidays busy traffic data characteristics, it puts forward the improved semi supervised SVR prediction algorithm. The method uses the semi supervised learning based on graph Laplacian to deform and train SVR kernel matrix. In allusion to graph Laplacian large amount of calculation, the Nystrom algorithm is proposed to optimize it. The simulation results show that the pro-posed algorithm has a good generalization ability and high prediction precision.
出处 《计算机工程与应用》 CSCD 2014年第20期211-214,共4页 Computer Engineering and Applications
基金 中国移动通信集团新疆有限公司研究发展基金项目(No.XJM2011-11)
关键词 节假日忙时话务预测 支持向量回归机 半监督学习 图形拉普拉斯算子 Nystrom算法 holidays busy traffic forecasting Support Vector Regression(SVR)machine semi supervised learning graph Laplacian Nystrom algorithm
  • 引文网络
  • 相关文献

参考文献15

  • 1Chen Peiyuan,Pedersen T,Bak-Jensen B,et al.ARIMAbased time series model of stochastic wind power generation[J].IEEE Journals and Magazines,2010,25(2):667-676.
  • 2Zhang Rui,Xu Zongben,Huang Guangbin,et al.Global convergence of online BP training with dynamic learning rate[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(2):330-341.
  • 3Lu Zhao,Sun Jing,Butts K.Linear programming SVM RMA with application in engine system identification[J].IEEE Transactions on Automation Science and Engineering,2011,8(4):846-854.
  • 4王金林,赵辉.基于差异演化的ε-SVRM参数优化[J].计算机应用,2008,28(8):2074-2076. 被引量:2
  • 5赵莹,张健沛,杨静,王冠军.一种改进的分枝定界半监督支持向量机学习算法[J].电子学报,2010,38(2):449-454. 被引量:4
  • 6Elattar E E,Goulermas J,Wu Q H.Electric load forecasting based on locally weighted support vector regression[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2010,40(4):438-447.
  • 7Camps-Valls G,Bruzzone L,Roio-Alavrez J L,et al.Robust support vector regression for biophysical variable estimation from remotely sensed images[J].IEEE Geosci Remote Sens Lett,2009,3(3):339-343.
  • 8Argrius A,Herbster M,Pontil M.Combining graph Laplacians for semi-supervised learning[C]//Advances in Neural Information Processing Systems.Cambridge,Massachusetts:MIT Press,2006.
  • 9Subdnwain V,Niyogi P,Belkin M.Beyond the point cloud:from transductive to semi-supervised learning[C]//Proc22nd ICML,2005:824-831.
  • 10王娜,李霞.基于监督信息特性的主动半监督谱聚类算法[J].电子学报,2010,38(1):172-176. 被引量:34

二级参考文献35

  • 1S Kamvar,D Klein,C Manning. Spectral learning[ A] .In Proc. of IJCAI' 03 [ C ]. Mexico: Morgan Kaufmann Publishers, 2003.561 - 566.
  • 2A Demiriz, K Bennett, M Embrechts. Semi-supervised clustering using genetic algorithms[A]. In Proc. of the Intelligent Engineering Systems Through Artificial Neural Networks [C]. New York: ASME Press, 1999.809 - 814.
  • 3K Wagstaff, C Cardie, S Rogers, S Schroedl. Constrained k- means clustering with background knowledge[A]. In Proc. of ICML'01 [C]. San Francisco: Morgan Kaufmann Publishers, 2001.577 - 584.
  • 4S Basu,M Bilenko,R J Mooney.A probabilistic framework for semi-supervised clustering[A]. In Proc. of ICML'01 [C]. San Francisco: Morgan Kaufmann Publishers,2001.577- 584.
  • 5E Xing, A Ng, M Jordon, S Russell. Distance metric learning with application to clustering with side-information [A]. Advances in Neural Information Processing System [ C ]. Cambridge :MIT Press,2003.505 - 512.
  • 6D Klein, S Kamvar, C Manning. From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering[A] .In Proc. of ICML'02[C]. Sydney: Morgan Kaufmann Publishers,2002.307 - 314.
  • 7Bilenko M, Basu S, Mooney R. Integrating constraints and metric learning in semi-supervised clustering[A]. In Proc. of ICML'04[C]. Banff: ACM Press,2004.81 - 88.
  • 8Davidson I, Ravi s. The complexity of Non-hierarchical clustering with instance and cluster level constraints[J].Data Mining Knowledge Discovery,2007,14( 1 ):25 - 61.
  • 9Basu S, Banerjee A. Active semi-supervision for pairwise conslrained clustering[ A]. In Proc. of the 4th SIAM International Conference on Data Mining[C]. SIAM, 2004.333 - 344.
  • 10Qianjun Xu, DesJardins M, Wagstaff K. Active constrained clustering by examining spectral eigenvectors[A]. In Proc. of Discovery Science [C]. Heidelberg: Springer, 2005. 294 - 307.

共引文献37

;
使用帮助 返回顶部